메뉴 건너뛰기




Volumn 5, Issue , 2017, Pages 72-83

Enhancing Fault Classification Accuracy of Ball Bearing Using Central Tendency Based Time Domain Features

Author keywords

Central tendency of features; Fault diagnosis; Feature processing; Pattern recognition

Indexed keywords

BALL BEARINGS; COMPUTATIONAL EFFICIENCY; DATA HANDLING; FAILURE ANALYSIS; FAULT DETECTION; MACHINERY; PATTERN RECOGNITION;

EID: 85014993100     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2016.2608505     Document Type: Article
Times cited : (47)

References (48)
  • 1
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • N. Tandon and A. Choudhury, "A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings," Tribol. Int., vol. 32, no. 8, pp. 469-480, 1999.
    • (1999) Tribol. Int. , vol.32 , Issue.8 , pp. 469-480
    • Tandon, N.1    Choudhury, A.2
  • 4
    • 34249733154 scopus 로고    scopus 로고
    • The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
    • N. Sawalhi, R. Randall, and H. Endo, "The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis," Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2616-2633, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2616-2633
    • Sawalhi, N.1    Randall, R.2    Endo, H.3
  • 5
    • 84872743749 scopus 로고    scopus 로고
    • An energy kurtosis demodulation technique for signal denoising and bearing fault detection
    • W. Wang and H. Lee, "An energy kurtosis demodulation technique for signal denoising and bearing fault detection," Meas. Sci. Technol., vol. 24, no. 2, p. 025601, 2013.
    • (2013) Meas. Sci. Technol. , vol.24 , Issue.2 , pp. 025601
    • Wang, W.1    Lee, H.2
  • 6
    • 84884504255 scopus 로고    scopus 로고
    • Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition
    • W. Caesarendra, P. Kosasih, A. Tieu, C. Moodie, and B.-K. Choi, "Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition," J. Mech. Sci. Technol., vol. 27, no. 8, pp. 2253-2262, 2013.
    • (2013) J. Mech. Sci. Technol. , vol.27 , Issue.8 , pp. 2253-2262
    • Caesarendra, W.1    Kosasih, P.2    Tieu, A.3    Moodie, C.4    Choi, B.-K.5
  • 7
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference
    • Sep.
    • X. Lou and K. A. Loparo, "Bearing fault diagnosis based on wavelet transform and fuzzy inference," Mech. Syst. Signal Process., vol. 18, no. 5, pp. 1077-1095, Sep. 2004.
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 8
    • 33845454806 scopus 로고    scopus 로고
    • An approach to vibration analysis using wavelets in an application of aircraft health monitoring
    • C. Smith, C. M. Akujuobi, P. Hamory, and K. Kloesel, "An approach to vibration analysis using wavelets in an application of aircraft health monitoring," Mech. Syst. Signal Process., vol. 21, no. 3, pp. 1255-1272, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.3 , pp. 1255-1272
    • Smith, C.1    Akujuobi, C.M.2    Hamory, P.3    Kloesel, K.4
  • 9
    • 24344500897 scopus 로고    scopus 로고
    • Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
    • V. Purushotham, S. Narayanan, and S. A. Prasad, "Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition," NDT E Int., vol. 38, no. 8, pp. 654-664, 2005.
    • (2005) NDT e Int. , vol.38 , Issue.8 , pp. 654-664
    • Purushotham, V.1    Narayanan, S.2    Prasad, S.A.3
  • 10
    • 0035456123 scopus 로고    scopus 로고
    • Multiple bandpass autoregressive demodulation for rolling-element bearing fault diagnosis
    • J. Altmann and J. Mathew, "Multiple bandpass autoregressive demodulation for rolling-element bearing fault diagnosis," Mech. Syst. Signal Process., vol. 15, no. 5, pp. 963-977, 2001.
    • (2001) Mech. Syst. Signal Process. , vol.15 , Issue.5 , pp. 963-977
    • Altmann, J.1    Mathew, J.2
  • 11
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani, "Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine," Mech. Syst. Signal Process., vol. 21, no. 7, pp. 2933-2945, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.7 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 14
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, K. Al-Balushi, and S. A. Al-Araimi, "Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection," Eng. Appl. Artif. Intell., vol. 16, nos. 7-8, pp. 657-665, 2003.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , Issue.7-8 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.2    Al-Araimi, S.A.3
  • 15
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using suppoet vector machines and artificial neural networks, augmnted by genetic algorithms
    • L. Jack and A. Nandi, "Fault detection using suppoet vector machines and artificial neural networks, augmnted by genetic algorithms," Mech. Syst. Signal Process., vol. 16, nos. 2-3, pp. 373-390, 2002.
    • (2002) Mech. Syst. Signal Process. , vol.16 , Issue.2-3 , pp. 373-390
    • Jack, L.1    Nandi, A.2
  • 16
    • 33646512202 scopus 로고    scopus 로고
    • Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
    • A. Rojas and A. K. Nandi, "Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1523-1536, 2006.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1523-1536
    • Rojas, A.1    Nandi, A.K.2
  • 17
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • B. Samanta and K. Al-Balushi, "Artificial neural network based fault diagnostics of rolling element bearings using time-domain features," Mech. Syst. Signal Process., vol. 17, no. 2, pp. 317-328, 2003.
    • (2003) Mech. Syst. Signal Process. , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.2
  • 18
    • 0942289508 scopus 로고    scopus 로고
    • ARTfiSKOHONEN neural network for fault diagnosis of rotating machinery
    • B. S. Yang, T. Han, and J. L. An, "ARTfiSKOHONEN neural network for fault diagnosis of rotating machinery," Mech. Syst. Signal Process., vol. 18, no. 3, pp. 645-657, 2004.
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.3 , pp. 645-657
    • Yang, B.S.1    Han, T.2    An, J.L.3
  • 19
    • 4344700274 scopus 로고    scopus 로고
    • Fault detection using genetic programming
    • L. Zhang, L. B. Jack, and A. K. Nandi, "Fault detection using genetic programming," Mech. Syst. Signal Process., vol. 19, no. 2, pp. 271-289, 2005.
    • (2005) Mech. Syst. Signal Process. , vol.19 , Issue.2 , pp. 271-289
    • Zhang, L.1    Jack, L.B.2    Nandi, A.K.3
  • 20
    • 34047251878 scopus 로고    scopus 로고
    • Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
    • V. Sugumaran and K. Ramachandran, "Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing," Mech. Syst. Signal Process., vol. 21, no. 5, pp. 2237-2247, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2237-2247
    • Sugumaran, V.1    Ramachandran, K.2
  • 21
    • 78049528234 scopus 로고    scopus 로고
    • Fault diagnosis of ball bearings using machine learning methods
    • P. Kankar, S. C. Sharma, and S. Harsha, "Fault diagnosis of ball bearings using machine learning methods," Expert Syst. Appl., vol. 38, no. 3, pp. 1876-1886, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 1876-1886
    • Kankar, P.1    Sharma, S.C.2    Harsha, S.3
  • 22
    • 78650687670 scopus 로고    scopus 로고
    • Effect of number of features on classification of roller bearing faults using SVM and PSVM
    • V. Sugumaran and K. I. Ramachandran, "Effect of number of features on classification of roller bearing faults using SVM and PSVM," Expert Syst. Appl., vol. 38, no. 4, pp. 4088-4096, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 4088-4096
    • Sugumaran, V.1    Ramachandran, K.I.2
  • 23
    • 78650707295 scopus 로고    scopus 로고
    • Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine
    • M. Saimurugan, K. I. Ramachandran, V. Sugumaran, and N. R. Sakthivel, "Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine," Expert Syst. Appl., vol. 38, no. 4, pp. 3819-3826, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3819-3826
    • Saimurugan, M.1    Ramachandran, K.I.2    Sugumaran, V.3    Sakthivel, N.R.4
  • 24
    • 84929927841 scopus 로고    scopus 로고
    • Outlier detection: Applications and techniques
    • K. Singh and S. Upadhyaya, "Outlier detection: Applications and techniques," Int. J. Comput. Sci. Issues, vol. 9, no. 1, pp. 307-323, 2012.
    • (2012) Int. J. Comput. Sci. Issues , vol.9 , Issue.1 , pp. 307-323
    • Singh, K.1    Upadhyaya, S.2
  • 26
    • 47949100550 scopus 로고    scopus 로고
    • A comprehensive survey of numeric and symbolic outlier mining techniques
    • M. Agyemang, K. Barker, and R. Alhajj, "A comprehensive survey of numeric and symbolic outlier mining techniques," Intell. Data Anal., vol. 10, no. 6, pp. 521-538, 2006.
    • (2006) Intell. Data Anal. , vol.10 , Issue.6 , pp. 521-538
    • Agyemang, M.1    Barker, K.2    Alhajj, R.3
  • 27
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. J. Hodge and J. Austin, "A survey of outlier detection methodologies," Artif. Intell. Rev., vol. 22, no. 2, pp. 85-126, 2004.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 28
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A reviewfiPart 1: Statistical approaches
    • M. Markou and S. Singh, "Novelty detection: A reviewfiPart 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 29
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A reviewfiPart 2: Neural network based approaches
    • M. Markou and S. Singh, "Novelty detection: A reviewfiPart 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 30
  • 31
    • 84921067164 scopus 로고    scopus 로고
    • Advancements of outlier detection: A survey
    • J. Zhang, "Advancements of outlier detection: A survey," ICST Trans. Scalable Inf. Syst., vol. 13, no. 1, pp. 1-26, 2013.
    • (2013) ICST Trans. Scalable Inf. Syst. , vol.13 , Issue.1 , pp. 1-26
    • Zhang, J.1
  • 33
    • 77952873593 scopus 로고    scopus 로고
    • PHM system enhancement through noise reduction and feature normalization
    • Mar.
    • H. Lee, C. Byington, and M. Watson, "PHM system enhancement through noise reduction and feature normalization," in Proc. IEEE Aerosp. Conf., Mar. 2010, pp. 1-10.
    • (2010) Proc. IEEE Aerosp. Conf. , pp. 1-10
    • Lee, H.1    Byington, C.2    Watson, M.3
  • 34
    • 34548798776 scopus 로고    scopus 로고
    • A comprehensive high frequency vibration monitoring system for incipient fault detection and isolation of gears, bearings and shafts/couplings in turbine engines and accessories
    • M. Watson, M. Begin, S. Amin, J. Sheldon, H. Lee, and C. Byington, "A comprehensive high frequency vibration monitoring system for incipient fault detection and isolation of gears, bearings and shafts/couplings in turbine engines and accessories," in Proc. ASME Turbo Expo, 2007, pp. 885-894.
    • (2007) Proc. ASME Turbo Expo , pp. 885-894
    • Watson, M.1    Begin, M.2    Amin, S.3    Sheldon, J.4    Lee, H.5    Byington, C.6
  • 35
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in large datasets," in Proc. Int. Conf. Very Large Data Bases, 1998, pp. 392-403.
    • (1998) Proc. Int. Conf. Very Large Data Bases , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 36
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. KDD, vol. 96. 1996, pp. 226-231.
    • (1996) Proc. KDD , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 37
    • 0030344143 scopus 로고    scopus 로고
    • Identification of outliers in multivariate data
    • D. M. Rocke and D. L. Woodruff, "Identification of outliers in multivariate data," J. Amer. Statistical Assoc., vol. 91, no. 435, pp. 1047-1061, 1996.
    • (1996) J. Amer. Statistical Assoc. , vol.91 , Issue.435 , pp. 1047-1061
    • Rocke, D.M.1    Woodruff, D.L.2
  • 39
    • 84880877946 scopus 로고    scopus 로고
    • Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition
    • Jul.
    • Q. Liu, F. Chen, Z. Zhou, and Q. Wei, "Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition," Adv. Mech. Eng., vol. 5, p. 792584, Jul. 2013.
    • (2013) Adv. Mech. Eng. , vol.5 , pp. 792584
    • Liu, Q.1    Chen, F.2    Zhou, Z.3    Wei, Q.4
  • 42
    • 33749508107 scopus 로고    scopus 로고
    • Fast computation of the kurtogram for the detection of transient faults
    • J. Antoni, "Fast computation of the kurtogram for the detection of transient faults," Mech. Syst. Signal Process., vol. 21, no. 1, pp. 108-124, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.1 , pp. 108-124
    • Antoni, J.1
  • 43
    • 85015024585 scopus 로고    scopus 로고
    • Jul. accessed on Jul. 25, 2015. [Online]. Available
    • J. Antoni. (Jul. 2015). MATLAB Code to Compute Signal's Fast Kurtogram, accessed on Jul. 25, 2015. [Online]. Available: https://www.mathworks.com/matlabcentral/-leexchange/48912-fastkurtogram/content/Fastfikurtogram.m
    • (2015) MATLAB Code to Compute Signal's Fast Kurtogram
    • Antoni, J.1
  • 46
    • 0028730553 scopus 로고
    • Applying Bayesian networks to fault diagnosis
    • Aug.
    • H. Kirsch and K. Kroschel, "Applying Bayesian networks to fault diagnosis," in Proc. 3rd IEEE Conf. Control Appl., vol. 2. Aug. 1994, pp. 895-900.
    • (1994) Proc. 3rd IEEE Conf. Control Appl. , vol.2 , pp. 895-900
    • Kirsch, H.1    Kroschel, K.2
  • 48
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, "Induction of decision trees," Mach. Learn., vol. 1, no. 1, pp. 81-106, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.