-
1
-
-
0033336360
-
A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
-
N. Tandon and A. Choudhury, "A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings," Tribol. Int., vol. 32, no. 8, pp. 469-480, 1999.
-
(1999)
Tribol. Int.
, vol.32
, Issue.8
, pp. 469-480
-
-
Tandon, N.1
Choudhury, A.2
-
4
-
-
34249733154
-
The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis
-
N. Sawalhi, R. Randall, and H. Endo, "The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis," Mech. Syst. Signal Process., vol. 21, no. 6, pp. 2616-2633, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.6
, pp. 2616-2633
-
-
Sawalhi, N.1
Randall, R.2
Endo, H.3
-
5
-
-
84872743749
-
An energy kurtosis demodulation technique for signal denoising and bearing fault detection
-
W. Wang and H. Lee, "An energy kurtosis demodulation technique for signal denoising and bearing fault detection," Meas. Sci. Technol., vol. 24, no. 2, p. 025601, 2013.
-
(2013)
Meas. Sci. Technol.
, vol.24
, Issue.2
, pp. 025601
-
-
Wang, W.1
Lee, H.2
-
6
-
-
84884504255
-
Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition
-
W. Caesarendra, P. Kosasih, A. Tieu, C. Moodie, and B.-K. Choi, "Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition," J. Mech. Sci. Technol., vol. 27, no. 8, pp. 2253-2262, 2013.
-
(2013)
J. Mech. Sci. Technol.
, vol.27
, Issue.8
, pp. 2253-2262
-
-
Caesarendra, W.1
Kosasih, P.2
Tieu, A.3
Moodie, C.4
Choi, B.-K.5
-
7
-
-
2942525326
-
Bearing fault diagnosis based on wavelet transform and fuzzy inference
-
Sep.
-
X. Lou and K. A. Loparo, "Bearing fault diagnosis based on wavelet transform and fuzzy inference," Mech. Syst. Signal Process., vol. 18, no. 5, pp. 1077-1095, Sep. 2004.
-
(2004)
Mech. Syst. Signal Process.
, vol.18
, Issue.5
, pp. 1077-1095
-
-
Lou, X.1
Loparo, K.A.2
-
8
-
-
33845454806
-
An approach to vibration analysis using wavelets in an application of aircraft health monitoring
-
C. Smith, C. M. Akujuobi, P. Hamory, and K. Kloesel, "An approach to vibration analysis using wavelets in an application of aircraft health monitoring," Mech. Syst. Signal Process., vol. 21, no. 3, pp. 1255-1272, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.3
, pp. 1255-1272
-
-
Smith, C.1
Akujuobi, C.M.2
Hamory, P.3
Kloesel, K.4
-
9
-
-
24344500897
-
Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition
-
V. Purushotham, S. Narayanan, and S. A. Prasad, "Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition," NDT E Int., vol. 38, no. 8, pp. 654-664, 2005.
-
(2005)
NDT e Int.
, vol.38
, Issue.8
, pp. 654-664
-
-
Purushotham, V.1
Narayanan, S.2
Prasad, S.A.3
-
10
-
-
0035456123
-
Multiple bandpass autoregressive demodulation for rolling-element bearing fault diagnosis
-
J. Altmann and J. Mathew, "Multiple bandpass autoregressive demodulation for rolling-element bearing fault diagnosis," Mech. Syst. Signal Process., vol. 15, no. 5, pp. 963-977, 2001.
-
(2001)
Mech. Syst. Signal Process.
, vol.15
, Issue.5
, pp. 963-977
-
-
Altmann, J.1
Mathew, J.2
-
11
-
-
34548035641
-
Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
-
S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani, "Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine," Mech. Syst. Signal Process., vol. 21, no. 7, pp. 2933-2945, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.7
, pp. 2933-2945
-
-
Abbasion, S.1
Rafsanjani, A.2
Farshidianfar, A.3
Irani, N.4
-
12
-
-
84931842113
-
-
A. Herout, Ed. Rijeka, Croatia: InTech
-
T.W. Rauber, E. M. do Nascimento, E. D. Wandekokem, and F. M. Varejaõ, Pattern Recognition based Fault Diagnosis in Industrial Processes: Review and Application, A. Herout, Ed. Rijeka, Croatia: InTech, 2010.
-
(2010)
Pattern Recognition Based Fault Diagnosis in Industrial Processes: Review and Application
-
-
Rauber, T.W.1
Do Nascimento, E.M.2
Wandekokem, E.D.3
Varejaõ, F.M.4
-
13
-
-
4544293192
-
Towards automatic detection of local bearing defects in rotating machines
-
S. Ericsson, N. Grip, E. Johansson, L.-E. Persson, R. Sjöberg, and J.-O. Strömberg, "Towards automatic detection of local bearing defects in rotating machines," Mech. Syst. Signal Process., vol. 19, no. 3, pp. 509-535, 2005.
-
(2005)
Mech. Syst. Signal Process.
, vol.19
, Issue.3
, pp. 509-535
-
-
Ericsson, S.1
Grip, N.2
Johansson, E.3
Persson, L.-E.4
Sjöberg, R.5
Strömberg, J.-O.6
-
14
-
-
0347526092
-
Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
-
B. Samanta, K. Al-Balushi, and S. A. Al-Araimi, "Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection," Eng. Appl. Artif. Intell., vol. 16, nos. 7-8, pp. 657-665, 2003.
-
(2003)
Eng. Appl. Artif. Intell.
, vol.16
, Issue.7-8
, pp. 657-665
-
-
Samanta, B.1
Al-Balushi, K.2
Al-Araimi, S.A.3
-
15
-
-
0345978376
-
Fault detection using suppoet vector machines and artificial neural networks, augmnted by genetic algorithms
-
L. Jack and A. Nandi, "Fault detection using suppoet vector machines and artificial neural networks, augmnted by genetic algorithms," Mech. Syst. Signal Process., vol. 16, nos. 2-3, pp. 373-390, 2002.
-
(2002)
Mech. Syst. Signal Process.
, vol.16
, Issue.2-3
, pp. 373-390
-
-
Jack, L.1
Nandi, A.2
-
16
-
-
33646512202
-
Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
-
A. Rojas and A. K. Nandi, "Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1523-1536, 2006.
-
(2006)
Mech. Syst. Signal Process.
, vol.20
, Issue.7
, pp. 1523-1536
-
-
Rojas, A.1
Nandi, A.K.2
-
17
-
-
0037345899
-
Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
-
B. Samanta and K. Al-Balushi, "Artificial neural network based fault diagnostics of rolling element bearings using time-domain features," Mech. Syst. Signal Process., vol. 17, no. 2, pp. 317-328, 2003.
-
(2003)
Mech. Syst. Signal Process.
, vol.17
, Issue.2
, pp. 317-328
-
-
Samanta, B.1
Al-Balushi, K.2
-
18
-
-
0942289508
-
ARTfiSKOHONEN neural network for fault diagnosis of rotating machinery
-
B. S. Yang, T. Han, and J. L. An, "ARTfiSKOHONEN neural network for fault diagnosis of rotating machinery," Mech. Syst. Signal Process., vol. 18, no. 3, pp. 645-657, 2004.
-
(2004)
Mech. Syst. Signal Process.
, vol.18
, Issue.3
, pp. 645-657
-
-
Yang, B.S.1
Han, T.2
An, J.L.3
-
19
-
-
4344700274
-
Fault detection using genetic programming
-
L. Zhang, L. B. Jack, and A. K. Nandi, "Fault detection using genetic programming," Mech. Syst. Signal Process., vol. 19, no. 2, pp. 271-289, 2005.
-
(2005)
Mech. Syst. Signal Process.
, vol.19
, Issue.2
, pp. 271-289
-
-
Zhang, L.1
Jack, L.B.2
Nandi, A.K.3
-
20
-
-
34047251878
-
Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
-
V. Sugumaran and K. Ramachandran, "Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing," Mech. Syst. Signal Process., vol. 21, no. 5, pp. 2237-2247, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.5
, pp. 2237-2247
-
-
Sugumaran, V.1
Ramachandran, K.2
-
21
-
-
78049528234
-
Fault diagnosis of ball bearings using machine learning methods
-
P. Kankar, S. C. Sharma, and S. Harsha, "Fault diagnosis of ball bearings using machine learning methods," Expert Syst. Appl., vol. 38, no. 3, pp. 1876-1886, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.3
, pp. 1876-1886
-
-
Kankar, P.1
Sharma, S.C.2
Harsha, S.3
-
22
-
-
78650687670
-
Effect of number of features on classification of roller bearing faults using SVM and PSVM
-
V. Sugumaran and K. I. Ramachandran, "Effect of number of features on classification of roller bearing faults using SVM and PSVM," Expert Syst. Appl., vol. 38, no. 4, pp. 4088-4096, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.4
, pp. 4088-4096
-
-
Sugumaran, V.1
Ramachandran, K.I.2
-
23
-
-
78650707295
-
Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine
-
M. Saimurugan, K. I. Ramachandran, V. Sugumaran, and N. R. Sakthivel, "Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine," Expert Syst. Appl., vol. 38, no. 4, pp. 3819-3826, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.4
, pp. 3819-3826
-
-
Saimurugan, M.1
Ramachandran, K.I.2
Sugumaran, V.3
Sakthivel, N.R.4
-
24
-
-
84929927841
-
Outlier detection: Applications and techniques
-
K. Singh and S. Upadhyaya, "Outlier detection: Applications and techniques," Int. J. Comput. Sci. Issues, vol. 9, no. 1, pp. 307-323, 2012.
-
(2012)
Int. J. Comput. Sci. Issues
, vol.9
, Issue.1
, pp. 307-323
-
-
Singh, K.1
Upadhyaya, S.2
-
25
-
-
84885653934
-
Outlier detection techniques
-
Washington DC, USA
-
H.-P. Kriegel, P. P. Kröger, and A. Zimek, "Outlier detection techniques," in Proc. 16th ACM Int. Conf. Knowl. Discovery Data Mining (SIGKDD), Washington, DC, USA, 2010.
-
(2010)
Proc. 16th ACM Int. Conf. Knowl. Discovery Data Mining (SIGKDD)
-
-
Kriegel, H.-P.1
Kröger, P.P.2
Zimek, A.3
-
26
-
-
47949100550
-
A comprehensive survey of numeric and symbolic outlier mining techniques
-
M. Agyemang, K. Barker, and R. Alhajj, "A comprehensive survey of numeric and symbolic outlier mining techniques," Intell. Data Anal., vol. 10, no. 6, pp. 521-538, 2006.
-
(2006)
Intell. Data Anal.
, vol.10
, Issue.6
, pp. 521-538
-
-
Agyemang, M.1
Barker, K.2
Alhajj, R.3
-
27
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. J. Hodge and J. Austin, "A survey of outlier detection methodologies," Artif. Intell. Rev., vol. 22, no. 2, pp. 85-126, 2004.
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
28
-
-
0142063407
-
Novelty detection: A reviewfiPart 1: Statistical approaches
-
M. Markou and S. Singh, "Novelty detection: A reviewfiPart 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
29
-
-
0142126712
-
Novelty detection: A reviewfiPart 2: Neural network based approaches
-
M. Markou and S. Singh, "Novelty detection: A reviewfiPart 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
30
-
-
68049121093
-
Anomaly detection: A survey
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.
-
(2009)
ACM Comput. Surv.
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
31
-
-
84921067164
-
Advancements of outlier detection: A survey
-
J. Zhang, "Advancements of outlier detection: A survey," ICST Trans. Scalable Inf. Syst., vol. 13, no. 1, pp. 1-26, 2013.
-
(2013)
ICST Trans. Scalable Inf. Syst.
, vol.13
, Issue.1
, pp. 1-26
-
-
Zhang, J.1
-
33
-
-
77952873593
-
PHM system enhancement through noise reduction and feature normalization
-
Mar.
-
H. Lee, C. Byington, and M. Watson, "PHM system enhancement through noise reduction and feature normalization," in Proc. IEEE Aerosp. Conf., Mar. 2010, pp. 1-10.
-
(2010)
Proc. IEEE Aerosp. Conf.
, pp. 1-10
-
-
Lee, H.1
Byington, C.2
Watson, M.3
-
34
-
-
34548798776
-
A comprehensive high frequency vibration monitoring system for incipient fault detection and isolation of gears, bearings and shafts/couplings in turbine engines and accessories
-
M. Watson, M. Begin, S. Amin, J. Sheldon, H. Lee, and C. Byington, "A comprehensive high frequency vibration monitoring system for incipient fault detection and isolation of gears, bearings and shafts/couplings in turbine engines and accessories," in Proc. ASME Turbo Expo, 2007, pp. 885-894.
-
(2007)
Proc. ASME Turbo Expo
, pp. 885-894
-
-
Watson, M.1
Begin, M.2
Amin, S.3
Sheldon, J.4
Lee, H.5
Byington, C.6
-
35
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in large datasets," in Proc. Int. Conf. Very Large Data Bases, 1998, pp. 392-403.
-
(1998)
Proc. Int. Conf. Very Large Data Bases
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
36
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. KDD, vol. 96. 1996, pp. 226-231.
-
(1996)
Proc. KDD
, vol.96
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
37
-
-
0030344143
-
Identification of outliers in multivariate data
-
D. M. Rocke and D. L. Woodruff, "Identification of outliers in multivariate data," J. Amer. Statistical Assoc., vol. 91, no. 435, pp. 1047-1061, 1996.
-
(1996)
J. Amer. Statistical Assoc.
, vol.91
, Issue.435
, pp. 1047-1061
-
-
Rocke, D.M.1
Woodruff, D.L.2
-
39
-
-
84880877946
-
Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition
-
Jul.
-
Q. Liu, F. Chen, Z. Zhou, and Q. Wei, "Fault diagnosis of rolling bearing based on wavelet package transform and ensemble empirical mode decomposition," Adv. Mech. Eng., vol. 5, p. 792584, Jul. 2013.
-
(2013)
Adv. Mech. Eng.
, vol.5
, pp. 792584
-
-
Liu, Q.1
Chen, F.2
Zhou, Z.3
Wei, Q.4
-
42
-
-
33749508107
-
Fast computation of the kurtogram for the detection of transient faults
-
J. Antoni, "Fast computation of the kurtogram for the detection of transient faults," Mech. Syst. Signal Process., vol. 21, no. 1, pp. 108-124, 2007.
-
(2007)
Mech. Syst. Signal Process.
, vol.21
, Issue.1
, pp. 108-124
-
-
Antoni, J.1
-
43
-
-
85015024585
-
-
Jul. accessed on Jul. 25, 2015. [Online]. Available
-
J. Antoni. (Jul. 2015). MATLAB Code to Compute Signal's Fast Kurtogram, accessed on Jul. 25, 2015. [Online]. Available: https://www.mathworks.com/matlabcentral/-leexchange/48912-fastkurtogram/content/Fastfikurtogram.m
-
(2015)
MATLAB Code to Compute Signal's Fast Kurtogram
-
-
Antoni, J.1
-
46
-
-
0028730553
-
Applying Bayesian networks to fault diagnosis
-
Aug.
-
H. Kirsch and K. Kroschel, "Applying Bayesian networks to fault diagnosis," in Proc. 3rd IEEE Conf. Control Appl., vol. 2. Aug. 1994, pp. 895-900.
-
(1994)
Proc. 3rd IEEE Conf. Control Appl.
, vol.2
, pp. 895-900
-
-
Kirsch, H.1
Kroschel, K.2
-
48
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan, "Induction of decision trees," Mach. Learn., vol. 1, no. 1, pp. 81-106, 1986.
-
(1986)
Mach. Learn.
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
|