메뉴 건너뛰기




Volumn Part F128815, Issue , 2013, Pages 149-157

MI2LS: Multi-instance learning from multiple information sources

Author keywords

Multi instance learning; Multi view learning; Stoachastic gradient descent

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVEX OPTIMIZATION; DATA MINING; INFORMATION RETRIEVAL SYSTEMS; LEARNING SYSTEMS;

EID: 85014560717     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2487575.2487651     Document Type: Conference Paper
Times cited : (29)

References (51)
  • 1
    • 73849126715 scopus 로고    scopus 로고
    • Human action recognition in videos using kinematic features and multiple instance learning
    • S. Ali and M. Shah. Human action recognition in videos using kinematic features and multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell., 32(2):288-303, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.2 , pp. 288-303
    • Ali, S.1    Shah, M.2
  • 2
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2003.
    • (2003) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled sata with co-Training
    • A. Blum and T. M. Mitchell. Combining labeled and unlabeled sata with co-Training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.M.2
  • 7
    • 34547998317 scopus 로고    scopus 로고
    • Multiple instance learning for sparse positive bags
    • R. C. Bunescu and R. J. Mooney. Multiple instance learning for sparse positive bags. In ICML, pages 105-112, 2007.
    • (2007) ICML , pp. 105-112
    • Bunescu, R.C.1    Mooney, R.J.2
  • 8
    • 33947180489 scopus 로고    scopus 로고
    • Miles: Multiple-instance learning via embedded instance selection
    • Y. Chen, J. Bi, and J. Z. Wang. Miles: Multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell., 28(12):1931-1947, 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.12 , pp. 1931-1947
    • Chen, Y.1    Bi, J.2    Wang, J.Z.3
  • 9
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Y. Chen and J. Z. Wang. Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5:913-939, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 10
    • 77956555219 scopus 로고    scopus 로고
    • A conditional random field for multiple-instance learning
    • T. Deselaers and V. Ferrari. A conditional random field for multiple-instance learning. In ICML, pages 287-294, 2010.
    • (2010) ICML , pp. 287-294
    • Deselaers, T.1    Ferrari, V.2
  • 13
    • 4043148628 scopus 로고    scopus 로고
    • Minimizing non convex non smooth functions via cutting planes and proximity control
    • A. Fuduli, M. Gaudioso, and G. Giallombardo. Minimizing non convex non smooth functions via cutting planes and proximity control. SIAM Journal on Optimization, 14(3):743-756, 2004.
    • (2004) SIAM Journal on Optimization , vol.14 , Issue.3 , pp. 743-756
    • Fuduli, A.1    Gaudioso, M.2    Giallombardo, G.3
  • 17
    • 80053436238 scopus 로고    scopus 로고
    • A graphbased framework for multitask multi-view learning
    • J. He and R. Lawrence. A graphbased framework for multitask multi-view learning. In ICML, pages 25-32, 2011.
    • (2011) ICML , pp. 25-32
    • He, J.1    Lawrence, R.2
  • 18
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.
    • (1999) SIGIR , pp. 50-57
    • Hofmann, T.1
  • 19
    • 51949113537 scopus 로고    scopus 로고
    • Multiple-instance ranking: Learning to rank images for image retrieval
    • Y. Hu, M. Li, and N. Yu. Multiple-instance ranking: Learning to rank images for image retrieval. In CVPR, 2008.
    • (2008) CVPR
    • Hu, Y.1    Li, M.2    Yu, N.3
  • 20
    • 70450164149 scopus 로고    scopus 로고
    • Learning a distance metric from multi-instance multi-label data
    • R. Jin, S. Wang, and Z.-H. Zhou. Learning a distance metric from multi-instance multi-label data. In CVPR, pages 896- 902, 2009.
    • (2009) CVPR , pp. 896-902
    • Jin, R.1    Wang, S.2    Zhou, Z.-H.3
  • 21
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In KDD, pages 217-226, 2006.
    • (2006) KDD , pp. 217-226
    • Joachims, T.1
  • 22
    • 0345120047 scopus 로고    scopus 로고
    • Composite kernels for hypertext categorisation
    • T. Joachims and N. Cristianini. Composite kernels for hypertext categorisation. In ICML, pages 250-257, 2001.
    • (2001) ICML , pp. 250-257
    • Joachims, T.1    Cristianini, N.2
  • 23
    • 77956555614 scopus 로고    scopus 로고
    • Gaussian processes multiple instance learning
    • M. Kim and F. D. la Torre. Gaussian processes multiple instance learning. In ICML, pages 535-542, 2010.
    • (2010) ICML , pp. 535-542
    • Kim, M.1    Torre, F.D.L.2
  • 24
    • 84880884345 scopus 로고    scopus 로고
    • Marginalized multi-instance kernels
    • J. T. Kwok and P.-M. Cheung. Marginalized multi-instance kernels. In IJCAI, pages 901-906, 2007.
    • (2007) IJCAI , pp. 901-906
    • Kwok, J.T.1    Cheung, P.-M.2
  • 25
    • 80052112818 scopus 로고    scopus 로고
    • Two-view transductive support vector machines
    • G. Li, S. C. H. Hoi, and K. Chang. Two-view transductive support vector machines. In SDM, pages 235-244, 2010.
    • (2010) SDM , pp. 235-244
    • Li, G.1    Hoi, S.C.H.2    Chang, K.3
  • 26
    • 81455143767 scopus 로고    scopus 로고
    • Drosophila gene expression pattern annotation through multi-instance multi-label learning
    • Y.-X. Li, S. Ji, S. Kumar, J. Ye, and Z.-H. Zhou. Drosophila gene expression pattern annotation through multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biology Bioinform., 9(1):98-112, 2012.
    • (2012) IEEE/ACM Trans. Comput. Biology Bioinform , vol.9 , Issue.1 , pp. 98-112
    • Li, Y.-X.1    Ji, S.2    Kumar, S.3    Ye, J.4    Zhou, Z.-H.5
  • 27
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, pages 1150-1157, 1999.
    • (1999) ICCV , pp. 1150-1157
    • Lowe, D.G.1
  • 29
    • 0002858869 scopus 로고    scopus 로고
    • A framework for multipleinstance learning
    • O. Maron and T. Lozano-Pérez. A framework for multipleinstance learning. In NIPS, 1997.
    • (1997) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 30
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • O. Maron and A. L. Ratan. Multiple-instance learning for natural scene classification. In ICML, pages 341-349, 1998.
    • (1998) ICML , pp. 341-349
    • Maron, O.1    Ratan, A.L.2
  • 31
    • 84949816463 scopus 로고    scopus 로고
    • Experiments with multi-view multi instance learning for supervised image classification
    • Auckland, New Zealand
    • M. Mayo and E. Frank. Experiments with multi-view multi instance learning for supervised image classification. In Proc 26th International Conference Image and Vision Computing New Zealand, Auckland, New Zealand, pages 363-369, 2011.
    • (2011) Proc 26th International Conference Image and Vision Computing New Zealand , pp. 363-369
    • Mayo, M.1    Frank, E.2
  • 32
    • 33749263718 scopus 로고    scopus 로고
    • MISSL: Multiple-instance semi-supervised learning
    • R. Rahmani and S. Goldman. MISSL: Multiple-instance semi-supervised learning. In ICML, 2006.
    • (2006) ICML
    • Rahmani, R.1    Goldman, S.2
  • 34
    • 84867120686 scopus 로고    scopus 로고
    • Making gradient descent optimal for strongly convex stoachastic optimization
    • A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stoachastic optimization. In ICML, 2012.
    • (2012) ICML
    • Rakhlin, A.1    Shamir, O.2    Sridharan, K.3
  • 37
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient solver for svm. Math. Program., 127(1):3-30, 2011.
    • (2011) Math. Program , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 42
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J.Wang, et Jean-Daniel Zucker, and J. daniel Zucker. Solving the multiple-instance problem: A lazy learning approach. In ICML, pages 1119-1125, 2000.
    • (2000) ICML , pp. 1119-1125
    • Wang, J.1    Zucker, E.J.-D.2    Zucker, J.D.3
  • 43
    • 84864040410 scopus 로고    scopus 로고
    • A local learning approach for clustering
    • M. Wu and B. Schölkopf. A local learning approach for clustering. In NIPS, pages 1529-1536, 2006.
    • (2006) NIPS , pp. 1529-1536
    • Wu, M.1    Schölkopf, B.2
  • 44
    • 84860227756 scopus 로고    scopus 로고
    • Indentifying multi instance outliers
    • O.Wu, J. Gao, W. Hu, B. Li, and M. Zhu. Indentifying multi instance outliers. In SDM, pages 430-441, 2010.
    • (2010) SDM , pp. 430-441
    • Wu, O.1    Gao, J.2    Hu, W.3    Li, B.4    Zhu, M.5
  • 45
    • 80052660541 scopus 로고    scopus 로고
    • Multiview transfer learning with a large margin approach
    • D. Zhang, J. He, Y. Liu, L. Si, and R. D. Lawrence. Multiview transfer learning with a large margin approach. In KDD, pages 1208-1216, 2011.
    • (2011) KDD , pp. 1208-1216
    • Zhang, D.1    He, J.2    Liu, Y.3    Si, L.4    Lawrence, R.D.5
  • 46
    • 85162523395 scopus 로고    scopus 로고
    • Multiple instance learning on structured data
    • D. Zhang, Y. Liu, L. Si, J. Zhang, and R. D. Lawrence. Multiple instance learning on structured data. In NIPS, pages 145- 153, 2011.
    • (2011) N NIPS , pp. 145-153
    • Zhang, D.1    Liu, Y.2    Si, L.3    Zhang, J.4    Lawrence, R.D.5
  • 47
    • 57749186425 scopus 로고    scopus 로고
    • Multi-view local learning
    • D. Zhang, F. Wang, C. Zhang, and T. Li. Multi-view local learning. In AAAI, pages 752-757, 2008.
    • (2008) AAAI , pp. 752-757
    • Zhang, D.1    Wang, F.2    Zhang, C.3    Li, T.4
  • 48
    • 67149122177 scopus 로고    scopus 로고
    • M3miml: A maximum margin method for multi-instance multi-label learning
    • M.-L. Zhang and Z.-H. Zhou. M3miml: A maximum margin method for multi-instance multi-label learning. In ICDM, pages 688-697, 2008.
    • (2008) ICDM , pp. 688-697
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 49
    • 0012349465 scopus 로고    scopus 로고
    • Em-dd: An improved multi pleinstance learning technique
    • Q. Zhang and S. A. Goldman. Em-dd: An improved multipleinstance learning technique. In NIPS, pages 1073-1080, 2001.
    • (2001) NIPS , pp. 1073-1080
    • Zhang, Q.1    Goldman, S.A.2
  • 50
    • 33749580724 scopus 로고    scopus 로고
    • Linear prediction models with graph regularization for web-page categorization
    • T. Zhang, A. Popescul, and B. Dom. Linear prediction models with graph regularization for web-page categorization. In SIGKDD, pages 821-826, 2006.
    • (2006) SIGKDD , pp. 821-826
    • Zhang, T.1    Popescul, A.2    Dom, B.3
  • 51
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In NIPS, pages 1609-1616, 2006.
    • (2006) NIPS , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.