메뉴 건너뛰기




Volumn 477, Issue , 2017, Pages 161-173

Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting

Author keywords

Closing price; EEMD MKNN; Ensemble empirical mode decomposition (EEMD); Forecasting; High price; k nearest neighbors (KNN)

Indexed keywords

FINANCIAL DATA PROCESSING; FORECASTING; MOTION COMPENSATION; TEXT PROCESSING; TIME SERIES; WHITE NOISE;

EID: 85014478903     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2017.02.072     Document Type: Article
Times cited : (109)

References (50)
  • 1
    • 0004209193 scopus 로고
    • Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets, Vol. 39
    • John Wiley & Sons
    • [1] Deboeck, G., Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets, Vol. 39. 1994, John Wiley & Sons.
    • (1994)
    • Deboeck, G.1
  • 2
    • 0031521391 scopus 로고    scopus 로고
    • Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
    • [2] Swanson, N.R., White, H., Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models. Int. J. Forecast. 13:4 (1997), 439–461.
    • (1997) Int. J. Forecast. , vol.13 , Issue.4 , pp. 439-461
    • Swanson, N.R.1    White, H.2
  • 3
    • 0010063925 scopus 로고    scopus 로고
    • An artificial neural network garch model for international stock return volatility
    • [3] Donaldson, R.G., Kamstra, M., An artificial neural network garch model for international stock return volatility. J. Empir. Finance 4:1 (1997), 17–46.
    • (1997) J. Empir. Finance , vol.4 , Issue.1 , pp. 17-46
    • Donaldson, R.G.1    Kamstra, M.2
  • 4
    • 0000557541 scopus 로고    scopus 로고
    • Forecasting stock market volatility using (nonlinear) garch models
    • [4] Franses, P.H., Van Dijk, D., Forecasting stock market volatility using (nonlinear) garch models. J. Forecast., 1996, 229–235.
    • (1996) J. Forecast. , pp. 229-235
    • Franses, P.H.1    Van Dijk, D.2
  • 5
    • 85014483416 scopus 로고    scopus 로고
    • The applications of markov prediction method in stock market
    • [5] Hao, F., The applications of markov prediction method in stock market. Friends Sci. 6:1 (2006), 78–81.
    • (2006) Friends Sci. , vol.6 , Issue.1 , pp. 78-81
    • Hao, F.1
  • 6
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • [6] Cao, L., Tay, F.E., Financial forecasting using support vector machines. Neural Comput. Appl. 10:2 (2001), 184–192.
    • (2001) Neural Comput. Appl. , vol.10 , Issue.2 , pp. 184-192
    • Cao, L.1    Tay, F.E.2
  • 7
    • 0036131678 scopus 로고    scopus 로고
    • Predicting stock price using fuzzy grey prediction system
    • [7] Wang, Y., Predicting stock price using fuzzy grey prediction system. Expert Syst. Appl. 22:1 (2002), 33–38.
    • (2002) Expert Syst. Appl. , vol.22 , Issue.1 , pp. 33-38
    • Wang, Y.1
  • 8
    • 0010915241 scopus 로고    scopus 로고
    • Forecasting price increments using an artificial neural network
    • [8] Castiglione, F., Forecasting price increments using an artificial neural network. Adv. Complex Syst. 4:01 (2001), 45–56.
    • (2001) Adv. Complex Syst. , vol.4 , Issue.1 , pp. 45-56
    • Castiglione, F.1
  • 9
    • 0037404567 scopus 로고    scopus 로고
    • Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index
    • [9] Chen, A.S., Leung, M.T., Daouk, H., Application of neural networks to an emerging financial market: forecasting and trading the Taiwan stock index. Comput. Oper. Res. 30:6 (2003), 901–923.
    • (2003) Comput. Oper. Res. , vol.30 , Issue.6 , pp. 901-923
    • Chen, A.S.1    Leung, M.T.2    Daouk, H.3
  • 10
    • 84978567506 scopus 로고
    • Forecasting s&p and gold futures prices: An application of neural networks
    • [10] Grudnitski, G., Osburn, L., Forecasting s&p and gold futures prices: An application of neural networks. J. Futures Mark. 13:6 (1993), 631–643.
    • (1993) J. Futures Mark. , vol.13 , Issue.6 , pp. 631-643
    • Grudnitski, G.1    Osburn, L.2
  • 11
    • 38749107016 scopus 로고    scopus 로고
    • Predicting stock index increments by neural networks: The role of trading volume under different horizons
    • [11] Zhu, X., Wang, H., Xu, L., Li, H., Predicting stock index increments by neural networks: The role of trading volume under different horizons. Expert Syst. Appl. 34:4 (2008), 3043–3054.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.4 , pp. 3043-3054
    • Zhu, X.1    Wang, H.2    Xu, L.3    Li, H.4
  • 12
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid arima and neural network model
    • [12] Zhang, G.P., Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50 (2003), 159–175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 13
    • 0003598568 scopus 로고    scopus 로고
    • A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series, Tech. rep.
    • National Bureau of Economic Research
    • [13] Stock, J.H., Watson, M.W., A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series, Tech. rep.., 1998, National Bureau of Economic Research.
    • (1998)
    • Stock, J.H.1    Watson, M.W.2
  • 14
    • 0142154955 scopus 로고    scopus 로고
    • A comparative study of linear and nonlinear models for aggregate retail sales forecasting
    • [14] Chu, C.-W., Zhang, G.P., A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 86:3 (2003), 217–231.
    • (2003) Int. J. Prod. Econ. , vol.86 , Issue.3 , pp. 217-231
    • Chu, C.-W.1    Zhang, G.P.2
  • 15
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • [15] Davis, G.A., Nihan, N.L., Nonparametric regression and short-term freeway traffic forecasting. J. Transp. Eng.-ASCE 117:2 (1991), 178–188.
    • (1991) J. Transp. Eng.-ASCE , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 16
    • 58849105825 scopus 로고    scopus 로고
    • A hybrid method based on artificial immune system and k-nn algorithm for better prediction of protein cellular localization sites
    • [16] Turkoglu, I., Kaymaz, E.D., A hybrid method based on artificial immune system and k-nn algorithm for better prediction of protein cellular localization sites. Appl. Soft Comput. 9:2 (2009), 497–502.
    • (2009) Appl. Soft Comput. , vol.9 , Issue.2 , pp. 497-502
    • Turkoglu, I.1    Kaymaz, E.D.2
  • 17
    • 33744510576 scopus 로고    scopus 로고
    • Conditional resampling of hydrologic time series using multiple predictor variables: A k-nearest neighbour approach
    • [17] Mehrotra, R., Sharma, A., Conditional resampling of hydrologic time series using multiple predictor variables: A k-nearest neighbour approach. Water Resour. Res. 29:7 (2006), 987–999.
    • (2006) Water Resour. Res. , vol.29 , Issue.7 , pp. 987-999
    • Mehrotra, R.1    Sharma, A.2
  • 18
    • 38949129104 scopus 로고    scopus 로고
    • Weather analogue: a tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach
    • [18] Bannayan, M., Hoogenboom, G., Weather analogue: a tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. Environ. Modell. Softw. 23:6 (2008), 703–713.
    • (2008) Environ. Modell. Softw. , vol.23 , Issue.6 , pp. 703-713
    • Bannayan, M.1    Hoogenboom, G.2
  • 19
    • 84857982932 scopus 로고    scopus 로고
    • Estimating forest attribute parameters for small areas using nearest neighbors techniques
    • [19] McRoberts, R.E., Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest. Ecol. Manag. 272 (2012), 3–12.
    • (2012) Forest. Ecol. Manag. , vol.272 , pp. 3-12
    • McRoberts, R.E.1
  • 20
    • 34548451136 scopus 로고    scopus 로고
    • Remote sensing support for national forest inventories
    • [20] McRoberts, R.E., Tomppo, E.O., Remote sensing support for national forest inventories. Remote Sens. Environ. 110:4 (2007), 412–419.
    • (2007) Remote Sens. Environ. , vol.110 , Issue.4 , pp. 412-419
    • McRoberts, R.E.1    Tomppo, E.O.2
  • 21
    • 41249100721 scopus 로고    scopus 로고
    • Nearest neighbor imputation of species level, plot-scale forest structure attributes from lidar data
    • [21] Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J., Nearest neighbor imputation of species level, plot-scale forest structure attributes from lidar data. Remote Sens. Environ. 112:5 (2008), 2232–2245.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 2232-2245
    • Hudak, A.T.1    Crookston, N.L.2    Evans, J.S.3    Hall, D.E.4    Falkowski, M.J.5
  • 22
  • 23
    • 33845573157 scopus 로고    scopus 로고
    • Predicting the plot volume by tree species using airborne laser scanning and aerial photographs
    • [23] Packalén, P., Maltamo, M., Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. For. Sci. 52:6 (2006), 611–622.
    • (2006) For. Sci. , vol.52 , Issue.6 , pp. 611-622
    • Packalén, P.1    Maltamo, M.2
  • 24
    • 77951740434 scopus 로고    scopus 로고
    • A model assisted k-nearest neighbour approach to remove extrapolation bias
    • [24] Magnussen, S., Tomppo, E., McRoberts, R.E., A model assisted k-nearest neighbour approach to remove extrapolation bias. Scand. J. For. Res. 25:2 (2010), 174–184.
    • (2010) Scand. J. For. Res. , vol.25 , Issue.2 , pp. 174-184
    • Magnussen, S.1    Tomppo, E.2    McRoberts, R.E.3
  • 25
    • 58249142084 scopus 로고    scopus 로고
    • Diagnostic tools for nearest neighbors techniques when used with satellite imagery
    • [25] McRoberts, R.E., Diagnostic tools for nearest neighbors techniques when used with satellite imagery. Remote Sens. Environ. 113:3 (2009), 489–499.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.3 , pp. 489-499
    • McRoberts, R.E.1
  • 27
    • 39749128487 scopus 로고    scopus 로고
    • A new approach for crude oil price analysis based on empirical mode decomposition
    • [27] Zhang, X., Lai, K.K., Wang, S.Y., A new approach for crude oil price analysis based on empirical mode decomposition. Energy Econ. 30:3 (2008), 905–918.
    • (2008) Energy Econ. , vol.30 , Issue.3 , pp. 905-918
    • Zhang, X.1    Lai, K.K.2    Wang, S.Y.3
  • 28
    • 13844262669 scopus 로고    scopus 로고
    • Damage detection in gear systems using empirical mode decomposition
    • [28] Loutridis, S., Damage detection in gear systems using empirical mode decomposition. Eng. Struct. 26:12 (2004), 1833–1841.
    • (2004) Eng. Struct. , vol.26 , Issue.12 , pp. 1833-1841
    • Loutridis, S.1
  • 29
    • 40649113094 scopus 로고    scopus 로고
    • Empirical mode decomposition analysis of two different financial time series and their comparison
    • [29] Guhathakurta, K., Mukherjee, I., Chowdhury, A.R., Empirical mode decomposition analysis of two different financial time series and their comparison. Chaos Solitons Fractals 37:4 (2008), 1214–1227.
    • (2008) Chaos Solitons Fractals , vol.37 , Issue.4 , pp. 1214-1227
    • Guhathakurta, K.1    Mukherjee, I.2    Chowdhury, A.R.3
  • 30
    • 57849150854 scopus 로고    scopus 로고
    • Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition
    • [30] Yeh, J.R., Fan, S.-Z., Shieh, J.S., Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition. Med. Eng. Phys. 31:1 (2009), 92–100.
    • (2009) Med. Eng. Phys. , vol.31 , Issue.1 , pp. 92-100
    • Yeh, J.R.1    Fan, S.-Z.2    Shieh, J.S.3
  • 31
    • 0035484180 scopus 로고    scopus 로고
    • Application of the empirical mode decomposition-Hilbert spectrum method to identify near fault ground-motion characteristics and structural responses
    • [31] Loh, C.H., Wu, T.C., Huang, N.E., Application of the empirical mode decomposition-Hilbert spectrum method to identify near fault ground-motion characteristics and structural responses. Bull. Seismol. Soc. Amer. 91:5 (2001), 1339–1357.
    • (2001) Bull. Seismol. Soc. Amer. , vol.91 , Issue.5 , pp. 1339-1357
    • Loh, C.H.1    Wu, T.C.2    Huang, N.E.3
  • 32
    • 80955180520 scopus 로고    scopus 로고
    • Scaling analysis of phase fluctuations in experimental three phase flows
    • [32] Gao, Z.K., Jin, N.D., Scaling analysis of phase fluctuations in experimental three phase flows. Physica A 390:20 (2011), 3541–3550.
    • (2011) Physica A , vol.390 , Issue.20 , pp. 3541-3550
    • Gao, Z.K.1    Jin, N.D.2
  • 33
    • 33947100593 scopus 로고    scopus 로고
    • Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data
    • [33] Battista, B.M., Knapp, C., McGee, T., Goebel, V., Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 72:2 (2007), H29–H37.
    • (2007) Geophysics , vol.72 , Issue.2 , pp. H29-H37
    • Battista, B.M.1    Knapp, C.2    McGee, T.3    Goebel, V.4
  • 34
    • 84861423084 scopus 로고    scopus 로고
    • Comparing the applications of emd and eemd on time–frequency analysis of seismic signal
    • [34] Wang, T., Zhang, M., Yu, Q., Zhang, H., Comparing the applications of emd and eemd on time–frequency analysis of seismic signal. J. Appl. Geophys. 83 (2012), 29–34.
    • (2012) J. Appl. Geophys. , vol.83 , pp. 29-34
    • Wang, T.1    Zhang, M.2    Yu, Q.3    Zhang, H.4
  • 35
    • 3042694358 scopus 로고    scopus 로고
    • 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method
    • [35] Coughlin, K., Tung, K.K., 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Adv. Space Res. 34:2 (2004), 323–329.
    • (2004) Adv. Space Res. , vol.34 , Issue.2 , pp. 323-329
    • Coughlin, K.1    Tung, K.K.2
  • 36
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure eeg signals using empirical mode decomposition
    • [36] Pachori, R.B., Bajaj, V., Analysis of normal and epileptic seizure eeg signals using empirical mode decomposition. Comput. Methods Programs Biomed. 104:3 (2011), 373–381.
    • (2011) Comput. Methods Programs Biomed. , vol.104 , Issue.3 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 37
    • 1642314375 scopus 로고    scopus 로고
    • Assessment of cardiovascular autonomic control by the empirical mode decomposition
    • [37] Neto, E.S., Custaud, M., Cejka, J., Abry, P., Frutoso, J., Gharib, D., Flandrin, P., et al. Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods Inf. Med. 43:1 (2004), 60–65.
    • (2004) Methods Inf. Med. , vol.43 , Issue.1 , pp. 60-65
    • Neto, E.S.1    Custaud, M.2    Cejka, J.3    Abry, P.4    Frutoso, J.5    Gharib, D.6    Flandrin, P.7
  • 38
    • 0033983754 scopus 로고    scopus 로고
    • Artifact reduction in electrogastrogram based on empirical mode decomposition method
    • [38] Liang, H., Lin, Z., McCallum, R., Artifact reduction in electrogastrogram based on empirical mode decomposition method. Med. Biol. Eng. Comput. 38:1 (2000), 35–41.
    • (2000) Med. Biol. Eng. Comput. , vol.38 , Issue.1 , pp. 35-41
    • Liang, H.1    Lin, Z.2    McCallum, R.3
  • 39
    • 0034904039 scopus 로고    scopus 로고
    • Application of empirical mode decomposition to heart rate variability analysis
    • [39] Echeverria, J., Crowe, J., Woolfson, M., Hayes Gill, B., Application of empirical mode decomposition to heart rate variability analysis. Med. Biol. Eng. Comput. 39:4 (2001), 471–479.
    • (2001) Med. Biol. Eng. Comput. , vol.39 , Issue.4 , pp. 471-479
    • Echeverria, J.1    Crowe, J.2    Woolfson, M.3    Hayes Gill, B.4
  • 40
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise assisted data analysis method
    • [40] Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adapt. Data Anal. 1:01 (2009), 1–41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 41
    • 84870059558 scopus 로고    scopus 로고
    • Application of empirical mode decomposition combined with k-nearest neighbors approach in financial time series forecasting
    • [41] Lin, A., Shang, P., Feng, G., Zhong, B., Application of empirical mode decomposition combined with k-nearest neighbors approach in financial time series forecasting. Fluct. Noise Lett., 11(02), 2012, 1250018.
    • (2012) Fluct. Noise Lett. , vol.11 , Issue.2 , pp. 1250018
    • Lin, A.1    Shang, P.2    Feng, G.3    Zhong, B.4
  • 42
    • 84919905211 scopus 로고    scopus 로고
    • Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
    • [42] Ren, Y., Suganthan, P., Empirical mode decomposition-k nearest neighbor models for wind speed forecasting. J. Power Energy Eng., 2(04), 2014, 176.
    • (2014) J. Power Energy Eng. , vol.2 , Issue.4 , pp. 176
    • Ren, Y.1    Suganthan, P.2
  • 43
    • 0442326792 scopus 로고    scopus 로고
    • Empirical mode decomposition as a filter bank
    • [43] Flandrin, P., Rilling, G., Goncalves, P., Empirical mode decomposition as a filter bank. IEEE Signal Proc. Lett. 11:2 (2004), 112–114.
    • (2004) IEEE Signal Proc. Lett. , vol.11 , Issue.2 , pp. 112-114
    • Flandrin, P.1    Rilling, G.2    Goncalves, P.3
  • 45
    • 85115671775 scopus 로고    scopus 로고
    • Emd equivalent filter banks, from interpretation to applications
    • [45] Flandrin, P., Gonçalves, P., Rilling, G., Emd equivalent filter banks, from interpretation to applications. World Sci., 2005, 57–74.
    • (2005) World Sci. , pp. 57-74
    • Flandrin, P.1    Gonçalves, P.2    Rilling, G.3
  • 46
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • [46] Cover, T., Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13:1 (1967), 21–27.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 47
    • 0032432719 scopus 로고    scopus 로고
    • Simulation of extreme precipitation in the rhine basin by nearest neighbour resampling
    • [47] Brandsma, T., Buishand, T.A., Simulation of extreme precipitation in the rhine basin by nearest neighbour resampling. Hydrol. Earth Syst. Sci. 2:2/3 (1998), 195–209.
    • (1998) Hydrol. Earth Syst. Sci. , vol.2 , Issue.2/3 , pp. 195-209
    • Brandsma, T.1    Buishand, T.A.2
  • 49
    • 0036146898 scopus 로고    scopus 로고
    • A comparison of the accuracy of short term foreign exchange forecasting methods
    • [49] Meade, N., A comparison of the accuracy of short term foreign exchange forecasting methods. Int. J. Forecast. 18:1 (2002), 67–83.
    • (2002) Int. J. Forecast. , vol.18 , Issue.1 , pp. 67-83
    • Meade, N.1
  • 50
    • 0000560787 scopus 로고    scopus 로고
    • Exchange rate forecasts with simultaneous nearest neighbour methods: Evidence from the ems
    • [50] Fernandez-Rodrıguez, F., Sosvilla-Rivero, S., Andrada-Felix, J., Exchange rate forecasts with simultaneous nearest neighbour methods: Evidence from the ems. Int. J. Forecast. 15:4 (1999), 383–392.
    • (1999) Int. J. Forecast. , vol.15 , Issue.4 , pp. 383-392
    • Fernandez-Rodrıguez, F.1    Sosvilla-Rivero, S.2    Andrada-Felix, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.