메뉴 건너뛰기




Volumn 11, Issue 2, 2012, Pages

Application of empirical mode decomposition combined with K-nearest neighbors approach in financial time series forecasting

Author keywords

closing prices; EMD KNN; empirical mode decomposition (EMD); forecasting; intrinsic mode functions (IMFs); k nearest neighbors (KNN); nonparametric method

Indexed keywords


EID: 84870059558     PISSN: 02194775     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219477512500186     Document Type: Article
Times cited : (21)

References (47)
  • 1
    • 58949100905 scopus 로고    scopus 로고
    • Forecasting histogram time series with k-nearest neighbours methods
    • J. Arroyo and C. Mate, Forecasting histogram time series with k-nearest neighbours methods, Int. J. Forecast. 25 (2009) 192-207.
    • (2009) Int. J. Forecast. , vol.25 , pp. 192-207
    • Arroyo, J.1    Mate, C.2
  • 2
    • 56349117682 scopus 로고    scopus 로고
    • Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water
    • M. K. Das and N. Kishor, Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water, Expert Syst. Appl. 36 (2009) 1142-1154.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1142-1154
    • Das, M.K.1    Kishor, N.2
  • 3
    • 51349101067 scopus 로고    scopus 로고
    • Shortrange forecast of atmospheric pollutants using non-linear prediction method
    • V. N. Khokhlov, A. V. Glushkov, N. S. Loboda and Y. Y. Bunyakova, Shortrange forecast of atmospheric pollutants using non-linear prediction method, Atmos. Environ. 42 (2008) 7284-7292.
    • (2008) Atmos. Environ. , vol.42 , pp. 7284-7292
    • Khokhlov, V.N.1    Glushkov, A.V.2    Loboda, N.S.3    Bunyakova, Y.Y.4
  • 4
    • 33748082327 scopus 로고    scopus 로고
    • An evolutionary approach to the combination of multiple classifiers to predict a stock price index
    • M. J. Kim, S. H. Min and I. Han, An evolutionary approach to the combination of multiple classifiers to predict a stock price index, Expert Syst. Appl. 31 (2006) 241-247.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 241-247
    • Kim, M.J.1    Min, S.H.2    Han, I.3
  • 5
    • 0033096706 scopus 로고    scopus 로고
    • A comparison between neural networks and chaotic models for exchange rate prediction
    • F. Lisi and R. A. Schiavo, A comparison between neural networks and chaotic models for exchange rate prediction, Comput. Stat. Data Anal. 30 (1999) 87-102.
    • (1999) Comput. Stat. Data Anal. , vol.30 , pp. 87-102
    • Lisi, F.1    Schiavo, R.A.2
  • 7
    • 0034694864 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3 - A nonparametric probabilistic forecast model
    • A. Sharma, Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3 - A nonparametric probabilistic forecast model, J. Hydrol. 239 (2000) 249-258.
    • (2000) J. Hydrol. , vol.239 , pp. 249-258
    • Sharma, A.1
  • 8
    • 58249137246 scopus 로고    scopus 로고
    • Predicting categorical forest variables using an improved k-nearest neighbour estimator and landsat imagery
    • E. O. Tomppo, O. Gagliano, F. D. Natale, M. Katila and R. E. McRoberts, Predicting categorical forest variables using an improved k-nearest neighbour estimator and landsat imagery, Remote Sens. Environ. 113 (2009) 500-517.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 500-517
    • Tomppo, E.O.1    Gagliano, O.2    Natale, F.D.3    Katila, M.4    McRoberts, R.E.5
  • 9
    • 60849099018 scopus 로고    scopus 로고
    • A temporal case retrieval model to predict railway passenger arrivals
    • T. H. Tsai, A temporal case retrieval model to predict railway passenger arrivals, Expert Syst. Appl. 36 8876-8882.
    • Expert Syst. Appl. , vol.36 , pp. 8876-8882
    • Tsai, T.H.1
  • 10
    • 33644758281 scopus 로고    scopus 로고
    • Comparison of four different time series methods to forecast hepatitis A virus infection
    • M. Ture, and I. Kurt, Comparison of four different time series methods to forecast hepatitis A virus infection, Expert Syst. Appl. 31 (2006) 41-46.
    • (2006) Expert Syst. Appl. , vol.31 , pp. 41-46
    • Ture, M.1    Kurt, I.2
  • 11
    • 60849137473 scopus 로고    scopus 로고
    • An expert system to predict protein thermostability using decision tree
    • L. C. Wu, J. X. Lee, H. D. Huang, B. J. Liu and J. T. Horng, An expert system to predict protein thermostability using decision tree, Expert Syst. Appl. 36 (2009) 9007-9014.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9007-9014
    • Wu, L.C.1    Lee, J.X.2    Huang, H.D.3    Liu, B.J.4    Horng, J.T.5
  • 12
    • 33747886368 scopus 로고    scopus 로고
    • Predicting stock returns
    • D. Avramov and T. Chordia, Predicting stock returns, J. Financ. Econ. 82 (2006) 387-415.
    • (2006) J. Financ. Econ. , vol.82 , pp. 387-415
    • Avramov, D.1    Chordia, T.2
  • 13
    • 59649095913 scopus 로고    scopus 로고
    • Can we predict crashes? the case of the Brazilian stock market
    • D. O. Cajueiro, B. M. Tabak and F. K. Werneck, Can we predict crashes? The case of the Brazilian stock market, J. Phys. A 388 (2009) 1603-1609.
    • (2009) J. Phys. A , vol.388 , pp. 1603-1609
    • Cajueiro, D.O.1    Tabak, B.M.2    Werneck, F.K.3
  • 14
    • 84858816451 scopus 로고    scopus 로고
    • Forecasting volatility on the U.K. stock market: A test of the conditional autoregressive range model
    • H. C. Chou, Forecasting volatility on the U.K. stock market: A test of the conditional autoregressive range model, Int. Res. J. Financ. Econ. 10 (2007) 7-13.
    • (2007) Int. Res. J. Financ. Econ. , vol.10 , pp. 7-13
    • Chou, H.C.1
  • 15
    • 0002528209 scopus 로고
    • The behavior of stock-market prices
    • E. F. Fama, The behavior of stock-market prices, J. Bus. 38 (1965) 34-105.
    • (1965) J. Bus. , vol.38 , pp. 34-105
    • Fama, E.F.1
  • 17
    • 0041763698 scopus 로고    scopus 로고
    • Comparing linear and nonlinear forecasts for stock returns
    • A. Kanas and A. Yannopoulos, Comparing linear and nonlinear forecasts for stock returns, Int. Rev. Econ. Financ. 10 (2001) 383-398.
    • (2001) Int. Rev. Econ. Financ. , vol.10 , pp. 383-398
    • Kanas, A.1    Yannopoulos, A.2
  • 18
    • 9244248635 scopus 로고    scopus 로고
    • Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike
    • W. Leigh, R. Hightower and R. Modani, Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike, Expert Syst. Appl. 28 (2005) 1-8.
    • (2005) Expert Syst. Appl. , vol.28 , pp. 1-8
    • Leigh, W.1    Hightower, R.2    Modani, R.3
  • 19
    • 0041883740 scopus 로고    scopus 로고
    • Neural network forecasts of Canadian stock returns using accounting ratios
    • D. Olson and C. Mossman, Neural network forecasts of Canadian stock returns using accounting ratios, Int. J. Forecast. 19 (2003) 453-465.
    • (2003) Int. J. Forecast. , vol.19 , pp. 453-465
    • Olson, D.1    Mossman, C.2
  • 20
    • 0037379974 scopus 로고    scopus 로고
    • Critical market crashes
    • D. Sornette, Critical market crashes, Phys. Rep. 378 (2003) 1-98.
    • (2003) Phys. Rep. , vol.378 , pp. 1-98
    • Sornette, D.1
  • 21
    • 38149144400 scopus 로고
    • Forecasting stock market prices in a thin security market
    • I. Virtanen and P. Yli-Olli, Forecasting stock market prices in a thin security market, Omega 15 (1987) 145-155.
    • (1987) Omega , vol.15 , pp. 145-155
    • Virtanen, I.1    Yli-Olli, P.2
  • 22
    • 0033101262 scopus 로고    scopus 로고
    • Origins of the scaling behaviour in the dynamics of financial data
    • A. Weron, S. Mercik and R. Weron, Origins of the scaling behaviour in the dynamics of financial data, J. Phys. A 264 (1999) 562-569.
    • (1999) J. Phys. A , vol.264 , pp. 562-569
    • Weron, A.1    Mercik, S.2    Weron, R.3
  • 23
    • 0010063925 scopus 로고    scopus 로고
    • An artificial neural network-GARCH model for international stock return volatility
    • R. G. Donaldson and M. Kamstra, An artificial neural network-GARCH model for international stock return volatility, J. Empir. Financ. 4 (1997) 17-46.
    • (1997) J. Empir. Financ. , vol.4 , pp. 17-46
    • Donaldson, R.G.1    Kamstra, M.2
  • 24
    • 0000557541 scopus 로고    scopus 로고
    • Forecasting stock marketvolatility using (non-linear) GARCH models
    • P. H. Franses and D. V. Dijk, Forecasting stock marketvolatility using (non-linear) GARCH models, Int. J. Forecast. 15 (1996) 229-235.
    • (1996) Int. J. Forecast. , vol.15 , pp. 229-235
    • Franses, P.H.1    Dijk, D.V.2
  • 25
    • 85014483416 scopus 로고    scopus 로고
    • The applications of Markov prediction method in stock market
    • F. Hao, The applications of Markov prediction method in stock market, Friends Sci. 6 (2006) 78-81.
    • (2006) Friends Sci. , vol.6 , pp. 78-81
    • Hao, F.1
  • 26
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • L. J. Cao and F. E. H. Tay, Financial forecasting using support vector machines, Neural Comput. Appl. 10 (2001) 184-192.
    • (2001) Neural Comput. Appl. , vol.10 , pp. 184-192
    • Cao, L.J.1    Tay, F.E.H.2
  • 27
    • 0036131678 scopus 로고    scopus 로고
    • Predicting stock price using fuzzy grey prediction system
    • Y. F. Wang, Predicting stock price using fuzzy grey prediction system, Expert Syst. Appl. 22 (2002) 33-39.
    • (2002) Expert Syst. Appl. , vol.22 , pp. 33-39
    • Wang, Y.F.1
  • 28
    • 0010915241 scopus 로고    scopus 로고
    • Forecasting price increments using an artificial neural network
    • F. Castiglione, Forecasting price increments using an artificial neural network, Adv. Complex Syst. 4 (2001) 45-56.
    • (2001) Adv. Complex Syst. , vol.4 , pp. 45-56
    • Castiglione, F.1
  • 29
    • 0037404567 scopus 로고    scopus 로고
    • Application of neural networks to an emerging financial market: Forecasting and trading the Taiwan stock index
    • A. S. Chen, M. T. Leung and H. Daouk, Application of neural networks to an emerging financial market: Forecasting and trading the Taiwan stock index, Comput. Oper. Res. 30 (2003) 901-923.
    • (2003) Comput. Oper. Res. , vol.30 , pp. 901-923
    • Chen, A.S.1    Leung, M.T.2    Daouk, H.3
  • 30
    • 84978567506 scopus 로고
    • Forecasting S&P 500 and gold futures prices: An application of neural networks
    • G. Grudnitsky and L. Osburn, Forecasting S&P 500 and gold futures prices: An application of neural networks, J. Futures Markets 13 (1993) 631-643.
    • (1993) J. Futures Markets , vol.13 , pp. 631-643
    • Grudnitsky, G.1    Osburn, L.2
  • 31
    • 38749107016 scopus 로고    scopus 로고
    • Predicting stock index increments by neural networks: The role of trading volume under different horizons
    • X. T. Zhu, H.Wang, L. Xu and H. Z. Li, Predicting stock index increments by neural networks: The role of trading volume under different horizons, Expert Syst. Appl. 34 (2008) 3043-3054.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 3043-3054
    • Zhu, X.T.1    Wang, H.2    Xu, L.3    Li, H.Z.4
  • 33
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • G. A. Davis and N. L. Nihan, Nonparametric regression and short-term freeway traffic forecasting, ASCE J. Transp. Eng. 117 (1991) 178-188.
    • (1991) ASCE J. Transp. Eng. , vol.117 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 34
    • 58849105825 scopus 로고    scopus 로고
    • A hybrid method based on artificial immune system and k-NN algorithm for better prediction of protein cellular localization sites
    • I. Turkoglu and E. D. Kaymaz, A hybrid method based on artificial immune system and k-NN algorithm for better prediction of protein cellular localization sites, Appl. Soft Comput. 9 (2009) 497-502.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 497-502
    • Turkoglu, I.1    Kaymaz, E.D.2
  • 35
    • 33744510576 scopus 로고    scopus 로고
    • Conditional resampling of hydrologic time series using multiple predictor variables: A k-nearest neighbour approach
    • R. Mehrotra and A. Sharma, Conditional resampling of hydrologic time series using multiple predictor variables: A k-nearest neighbour approach, Adv. Water Resour. 29 (2006) 987-999.
    • (2006) Adv. Water Resour. , vol.29 , pp. 987-999
    • Mehrotra, R.1    Sharma, A.2
  • 36
    • 53849129254 scopus 로고    scopus 로고
    • Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors
    • H. Li, J. Sun and B. L. Sun, Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors, Expert Syst. Appl. 36 (2009) 643-659.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 643-659
    • Li, H.1    Sun, J.2    Sun, B.L.3
  • 37
    • 38949129104 scopus 로고    scopus 로고
    • Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach
    • M. Bannayan and G. Hoogenboom, Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach, Environ. Model. Softw. 23 (2008) 703-713.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 703-713
    • Bannayan, M.1    Hoogenboom, G.2
  • 38
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
    • N. E. Huang, Z. Shen and S. R. Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. Lond. 454 (1998) 903-995.
    • (1998) Proc. R. Soc. Lond. , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 39
    • 39749128487 scopus 로고    scopus 로고
    • A new approach for crude oil price analysis based on Empirical Mode Decomposition
    • X. Zhang, K. K. Lai and S. Y. Wang, A new approach for crude oil price analysis based on Empirical Mode Decomposition, Resour. Energy Econ. 30 (2008) 905-918.
    • (2008) Resour. Energy Econ. , vol.30 , pp. 905-918
    • Zhang, X.1    Lai, K.K.2    Wang, S.Y.3
  • 40
    • 13844262669 scopus 로고    scopus 로고
    • Damage detection in gear systems using empirical mode decomposition
    • S. J. Loutridis, Damage detection in gear systems using empirical mode decomposition, Eng. Struct. 26 (2004) 1833-1841.
    • (2004) Eng. Struct. , vol.26 , pp. 1833-1841
    • Loutridis, S.J.1
  • 41
    • 40649113094 scopus 로고    scopus 로고
    • Empirical mode decomposition analysis of two different financial time series and their comparison
    • K. Guhathakurta, I. Mukherjee and A. R. Chowdhury, Empirical mode decomposition analysis of two different financial time series and their comparison, Chaos Solitons Fractals 37 (2008) 1214-1227.
    • (2008) Chaos Solitons Fractals , vol.37 , pp. 1214-1227
    • Guhathakurta, K.1    Mukherjee, I.2    Chowdhury, A.R.3
  • 42
    • 57849150854 scopus 로고    scopus 로고
    • Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition
    • J. R. Yeh, S. Z. Fan and J. S. Shieh, Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition, Med. Eng. Phys. 31 (2009) 92-100.
    • (2009) Med. Eng. Phys. , vol.31 , pp. 92-100
    • Yeh, J.R.1    Fan, S.Z.2    Shieh, J.S.3
  • 43
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory 13 (1967) 21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 44
    • 0032432719 scopus 로고    scopus 로고
    • Simulation of extreme precipitation in the rhine basin by nearest-neighbour resampling
    • T. Brandsma, and T. A. Buishand, Simulation of extreme precipitation in the rhine basin by nearest-neighbour resampling, Hydrol. Earth Syst. Sci. 2 (1998) 195-209.
    • (1998) Hydrol. Earth Syst. Sci. , vol.2 , pp. 195-209
    • Brandsma, T.1    Buishand, T.A.2
  • 45
    • 15444377037 scopus 로고    scopus 로고
    • Statistical downscaling using k-nearest neighbors
    • S. M. Gangopadhyay and C. B. Rajagopalan, Statistical downscaling using k-nearest neighbors, Water Resour. Res. 41 (2005) 1-23.
    • (2005) Water Resour. Res. , vol.41 , pp. 1-23
    • Gangopadhyay, S.M.1    Rajagopalan, C.B.2
  • 46
    • 0036146898 scopus 로고    scopus 로고
    • A comparison of the accuracy of short term foreign exchange forecasting methods
    • M. Nigel, A comparison of the accuracy of short term foreign exchange forecasting methods, Int. J. Forecast. 18 (2002) 67-83.
    • (2002) Int. J. Forecast. , vol.18 , pp. 67-83
    • Nigel, M.1
  • 47
    • 0000560787 scopus 로고    scopus 로고
    • Exchange-rate forecasts with simultaneous nearest-neighbour methods: Evidence from the EMS
    • F. R. Fernando, S. R. Simón and A. F. Julián, Exchange-rate forecasts with simultaneous nearest-neighbour methods: Evidence from the EMS, Int. J. Forecast. 15 (1999) 383-392.
    • (1999) Int. J. Forecast. , vol.15 , pp. 383-392
    • Fernando, F.R.1    Simón, S.R.2    Julián, A.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.