-
1
-
-
84879776323
-
On the asymptotic stability of linear system of fractional-order difference equations
-
R. Abu-Saris, Q. Al-Madallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 1 (2013), 613-629; DOI: 10. 2478/s13540-013-0039-2; https://www. degruyter. com/view/j/fca. 2013. 16. issue-1/ issue-files/fca. 2013. 16. issue-1. xml.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 613-629
-
-
Abu-Saris, R.1
Al-Madallal, Q.2
-
2
-
-
44649195602
-
Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems
-
M. A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electrical Engineering 90, No 6 (2008), 455-467; DOI: 10. 1007/s00202-007-0092-0.
-
(2008)
Electrical Engineering
, vol.90
, Issue.6
, pp. 455-467
-
-
Al-Alaoui, M.A.1
-
3
-
-
57749209882
-
Stability of linear continuous-time fractional order systems with delays of the retarded type
-
M. Buslowicz, Stability of linear continuous-time fractional order systems with delays of the retarded type. Bulletin of the Polish Academy of Sciences, Techn. Sciences 56, No 4 (2008), 319-324.
-
(2008)
Bulletin of the Polish Academy of Sciences, Techn. Sciences
, vol.56
, Issue.4
, pp. 319-324
-
-
Buslowicz, M.1
-
4
-
-
79951632060
-
Robust stability of positive discrete-time linear systems of fractional order
-
M. Buslowicz, Robust stability of positive discrete-time linear systems of fractional order. Bulletin of the Polish Academy of Sciences, Techn. Sciences 58, No 4 (2010), 567-572; DOI: 10. 2478/v10175-010-0057-8.
-
(2010)
Bulletin of the Polish Academy of Sciences, Techn. Sciences
, vol.58
, Issue.4
, pp. 567-572
-
-
Buslowicz, M.1
-
5
-
-
69149089847
-
Simple conditions for practical stability of positive fractional discrete-time linear systems
-
M. Buslowicz, T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci. 19, No 2 (2009), 263-269; DOI: 10. 2478/v10006-009-0022-6.
-
(2009)
Int. J. Appl. Math. Comput. Sci.
, vol.19
, Issue.2
, pp. 263-269
-
-
Buslowicz, M.1
Kaczorek, T.2
-
6
-
-
84934878757
-
On explicit stability conditions for a linear fractional difference system
-
J. Cernák, I. Györi, L. Nechvátal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18, No 3 (2015), 651-672; DOI: 10. 1515/fca-2015-0040; https://www. degruyter. com/view/j/fca. 2015. 18. issue-3/ issue-files/fca. 2015. 18. issue-3. xml.
-
(2015)
Fract. Calc. Appl. Anal.
, vol.18
, Issue.3
, pp. 651-672
-
-
Cernák, J.1
Györi, I.2
Nechvátal, L.3
-
7
-
-
84990857128
-
Asymptotic stability of dynamic equations with two fractional terms: Continuous versus discrete case
-
J. Cernák, T. Kisela, Asymptotic stability of dynamic equations with two fractional terms: Continuous versus discrete case. Fract. Calc. Appl. Anal. 18, No 2 (2015), 437-458; DOI: 10. 1515/fca-2015-0028; https://www. degruyter. com/view/j/fca. 2015. 18. issue-2/ issue-files/fca. 2015. 18. issue-2. xml.
-
(2015)
Fract. Calc. Appl. Anal.
, vol.18
, Issue.2
, pp. 437-458
-
-
Cernák, J.1
Kisela, T.2
-
8
-
-
52349085396
-
Stability of discrete fractional order statespace systems
-
A. Dzielínski, D. Sierociuk, Stability of discrete fractional order statespace systems. J. Vib. Control 14, No 9-10 (2008), 1543-1556; DOI: 10. 1177/1077546307087431.
-
(2008)
J. Vib. Control
, vol.14
, Issue.9-10
, pp. 1543-1556
-
-
Dzielínski, A.1
Sierociuk, D.2
-
9
-
-
84910107177
-
A graphic stability criterion for non-commensurate fractionalorder time-delay systems
-
Z. Gao, A graphic stability criterion for non-commensurate fractionalorder time-delay systems. Nonlinear Dyn. 78, No 3 (2012), 2101-2111; DOI: 10. 1007/s11071-014-1580-1.
-
(2012)
Nonlinear Dyn.
, vol.78
, Issue.3
, pp. 2101-2111
-
-
Gao, Z.1
-
10
-
-
84871002986
-
A new approach for stability analysis of linear discrete-time fractional-order systems
-
Springer, Dordrecht, Netherlands
-
S. Guermah, S. Djennoune, M. Bettayeb, A new approach for stability analysis of linear discrete-time fractional-order systems. In: New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dordrecht, Netherlands (2010), 151-162.
-
(2010)
New Trends in Nanotechnology and Fractional Calculus Applications
, pp. 151-162
-
-
Guermah, S.1
Djennoune, S.2
Bettayeb, M.3
-
11
-
-
84870659780
-
New stability tests of positive standard and fractional linear systems
-
T. Kaczorek, New stability tests of positive standard and fractional linear systems. Circuits and Systems 2, No 4 (2011), 261-268; DOI: 10. 4236/cs. 2011. 24036.
-
(2011)
Circuits and Systems
, vol.2
, Issue.4
, pp. 261-268
-
-
Kaczorek, T.1
-
13
-
-
84985006688
-
Responses comparison of the two discretetime linear fractional state-space models
-
T. Kaczorek, P. Ostalczyk, Responses comparison of the two discretetime linear fractional state-space models. Fract. Calc. Appl. Anal. 19, No 4 (2016), 789-805; DOI: 10. 1515/fca-2016-0043; https://www. degruyter. com/view/j/fca. 2016. 19. issue-4/ issue-files/fca. 2016. 19. issue-4. xml.
-
(2016)
Fract. Calc. Appl. Anal.
, vol.19
, Issue.4
, pp. 789-805
-
-
Kaczorek, T.1
Ostalczyk, P.2
-
14
-
-
1542496801
-
-
2nd Ed. Addison Wesley Publishing Company, Boston, MA
-
R. Lopez, Advanced Engineering Mathematics, 2nd Ed. Addison Wesley Publishing Company, Boston, MA (2001).
-
(2001)
Advanced Engineering Mathematics
-
-
Lopez, R.1
-
15
-
-
84871749893
-
Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties
-
J. G. Lu, Y. Q. Chen, Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties. Fract. Calc. Appl. Anal. 16, No 1 (2013), 142-157; DOI: 10. 2478/s13540-013-0010-2; https://www. degruyter. com/view/j/fca. 2013. 16. issue-1/ issue-files/fca. 2013. 16. issue-1. xml.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 142-157
-
-
Lu, J.G.1
Chen, Y.Q.2
-
16
-
-
80053650360
-
Stability and resonance conditions of elementary fractional transfer functions
-
R. Malti, X. Moreau, F. Khemane, A. Oustaloup, Stability and resonance conditions of elementary fractional transfer functions. Automatica 47, No 11 (2011), 2462-2467; DOI: 10. 1016/j. Automatica. 2011. 08. 029.
-
(2011)
Automatica
, vol.47
, Issue.11
, pp. 2462-2467
-
-
Malti, R.1
Moreau, X.2
Khemane, F.3
Oustaloup, A.4
-
17
-
-
0002731965
-
Stability results for fractional differential equations with applications to control processing
-
Lille, France
-
D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Applications Multiconference, Vol. 2, Lille, France (1996), 963-968.
-
(1996)
Computational Engineering in Systems and Applications Multiconference
, vol.2
, pp. 963-968
-
-
Matignon, D.1
-
18
-
-
0000074512
-
Stability properties for generalized fractional differential systems
-
D. Matignon, Stability properties for generalized fractional differential systems. ESAIM Proceedings 5 (1998), 145-158; DOI: 10. 1051/proc:1998004.
-
(1998)
ESAIM Proceedings
, vol.5
, pp. 145-158
-
-
Matignon, D.1
-
19
-
-
79952143317
-
Fractional-order Systems and Controls: Fundamentals and Applications
-
Springer, London, UK
-
C. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control, Springer, London, UK (2010).
-
(2010)
Series on Advances in Industrial Control
-
-
Monje, C.1
Chen, Y.2
Vinagre, B.3
Xue, D.4
Feliu, V.5
-
20
-
-
84925340769
-
The z-transform method and delta type fractional difference operators
-
D. Mozyrska, M. Wyrwas, The z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 2015 (2015), Article ID: 852734; DOI: 10. 1155/2015/852734.
-
(2015)
Discrete Dyn. Nat. Soc.
, vol.2015
-
-
Mozyrska, D.1
Wyrwas, M.2
-
21
-
-
84876695925
-
Equivalent descriptions of a discrete-time fractionalorder linear system and its stability domains
-
P. Ostalczyk, Equivalent descriptions of a discrete-time fractionalorder linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22, No 3 (2012), 533-538; DOI: 10. 2478/v10006-012-0040-7.
-
(2012)
Int. J. Appl. Math. Comput. Sci.
, vol.22
, Issue.3
, pp. 533-538
-
-
Ostalczyk, P.1
-
23
-
-
77954349836
-
Stability of fractional-order systems with rational orders: A survey
-
I. Petrás, Stability of fractional-order systems with rational orders: A survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269-298; at http://www. math. bas. bg/fcaa.
-
(2009)
Fract. Calc. Appl. Anal.
, vol.12
, Issue.3
, pp. 269-298
-
-
Petrás, I.1
-
25
-
-
78049331182
-
Stability preservation analysis in direct discretization of fractional order transfer functions
-
M. Siami, M. S. Tavazoei, M. Haeri, Stability preservation analysis in direct discretization of fractional order transfer functions. Signal Processing 91, No 3 (2011), 508-512; DOI: 10. 1016/j. sigpro. 2010. 06. 009.
-
(2011)
Signal Processing
, vol.91
, Issue.3
, pp. 508-512
-
-
Siami, M.1
Tavazoei, M.S.2
Haeri, M.3
-
26
-
-
84871018471
-
Normalized finite fractional differences-The computational and accuracy breakthroughs
-
R. Stanislawski, K. J. Latawiec, Normalized finite fractional differences-the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22, No 4 (2012), 907-919; DOI: 10. 2478/v10006-012-0067-9.
-
(2012)
Int. J. Appl. Math. Comput. Sci.
, vol.22
, Issue.4
, pp. 907-919
-
-
Stanislawski, R.1
Latawiec, K.J.2
-
27
-
-
84883470466
-
Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability
-
R. Stanislawski, K. J. Latawiec, Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability. Bull. of the Polish Academy of Sciences, Techn. Sciences 61, No 2 (2013), 353-361; DOI: 10. 2478/bpasts-2013-0034.
-
(2013)
Bull. of the Polish Academy of Sciences, Techn. Sciences
, vol.61
, Issue.2
, pp. 353-361
-
-
Stanislawski, R.1
Latawiec, K.J.2
-
28
-
-
84883475500
-
Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems
-
R. Stanislawski, K. J. Latawiec, Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems. Bull. of the Polish Academy of Sciences, Techn. Sciences 61, No 2 (2013), 362-370; DOI: 10. 2478/bpasts-2013-0035.
-
(2013)
Bull. of the Polish Academy of Sciences, Techn. Sciences
, vol.61
, Issue.2
, pp. 362-370
-
-
Stanislawski, R.1
Latawiec, K.J.2
-
29
-
-
84925337207
-
A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractionalorder difference
-
R. Stanislawski, K. J. Latawiec, M. lukaniszyn, A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractionalorder difference. Math. Probl. Eng. 2015 (2015), Article ID: 512104; DOI: 10. 1155/2015/512104.
-
(2015)
Math. Probl. Eng.
, vol.2015
-
-
Stanislawski, R.1
Latawiec, K.J.2
Lukaniszyn, M.3
-
30
-
-
84874771284
-
Simple stability conditions of linear discrete time systems with multiple delay
-
S. B. Stojanovic, D. L. Debeljkovic, Simple stability conditions of linear discrete time systems with multiple delay. Serbian J. of Electrical Engineering 7, No 1 (2010), 69-79; DOI: 10. 2298/SJEE1001069S.
-
(2010)
Serbian J. of Electrical Engineering
, vol.7
, Issue.1
, pp. 69-79
-
-
Stojanovic, S.B.1
Debeljkovic, D.L.2
-
31
-
-
84947017016
-
Stability analysis of impulsive fractional-order systems by vector comparison principle
-
R. Wu, M. Feckan, Stability analysis of impulsive fractional-order systems by vector comparison principle. Nonlinear Dyn. 82, No 4 (2015), 2007-2019; DOI: 10. 1007/s11071-015-2295-7.
-
(2015)
Nonlinear Dyn.
, vol.82
, Issue.4
, pp. 2007-2019
-
-
Wu, R.1
Feckan, M.2
|