메뉴 건너뛰기




Volumn 18, Issue 3, 2015, Pages 651-672

On explicit stability conditions for a linear fractional difference system

Author keywords

asymptotic stability; Caputo difference operator; fractional order difference system; Riemann Liouville difference operator

Indexed keywords


EID: 84934878757     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.1515/fca-2015-0040     Document Type: Article
Times cited : (197)

References (24)
  • 1
    • 79960975255 scopus 로고    scopus 로고
    • On Riemann and Caputo fractional differences
    • T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, No 3 (2011), 1602-1611.
    • (2011) Comput. Math. Appl. , vol.62 , Issue.3 , pp. 1602-1611
    • Abdeljawad, T.1
  • 2
    • 84879776323 scopus 로고    scopus 로고
    • On the asymptotic stability of linear system of fractional-order difference equations
    • R. Abu-Saris, Q. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613-629; DOI: 10.2478/s13540-013-0039-2; http://www.degruyter.com/view/j/fca.2013.16.issue-3/s13540-013-0039-2/s13540-013-0039-2.xml;http://link.springer.com/article/10.2478/s13540-013-0039-2.
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.3 , pp. 613-629
    • Abu-Saris, R.1    Al-Mdallal, Q.2
  • 3
    • 46649104814 scopus 로고    scopus 로고
    • On exact convergence rates for solutions of linear systems of Volterra difference equations
    • J.A.D. Appleby, I. Györi, D.W. Reynolds, On exact convergence rates for solutions of linear systems of Volterra difference equations. J. Differ. Equ. Appl. 12, No 12 (2006), 1257-1275.
    • (2006) J. Differ. Equ. Appl. , vol.12 , Issue.12 , pp. 1257-1275
    • Appleby, J.A.D.1    Györi, I.2    Reynolds, D.W.3
  • 4
    • 0004147916 scopus 로고
    • 2nd Ed., World Student Series Edition Addison-Wesley
    • T.M. Apostol, Mathematical Analysis. 2nd Ed., World Student Series Edition, Addison-Wesley (1974).
    • (1974) Mathematical Analysis
    • Apostol, T.M.1
  • 5
    • 77950548183 scopus 로고    scopus 로고
    • A transform method in discrete fractional calculus
    • F.M. Atici, P.W. Eloe, A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, No 2 (2007), 165-176.
    • (2007) Int. J. Differ. Equ. , vol.2 , Issue.2 , pp. 165-176
    • Atici, F.M.1    Eloe, P.W.2
  • 6
    • 79958719410 scopus 로고    scopus 로고
    • Linear systems of fractional nabla difference equations
    • F.M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, No 2 (2011), 353-370.
    • (2011) Rocky Mt. J. Math. , vol.41 , Issue.2 , pp. 353-370
    • Atici, F.M.1    Eloe, P.W.2
  • 7
    • 79958825483 scopus 로고    scopus 로고
    • Fixed points and asymptotic stability of nonlinear fractional difference equations
    • F. Chen, Fixed points and asymptotic stability of nonlinear fractional difference equations. El. J. Qualit. Theory Differ. Equ. 2011, No 39 (2011), 18 pages.
    • (2011) El. J. Qualit. Theory Differ. Equ. , vol.2011 , Issue.39 , pp. 18
    • Chen, F.1
  • 8
    • 84874100688 scopus 로고    scopus 로고
    • Stability regions for linear fractional differential systems and their discretizations
    • J. Cermák, T. Kisela, L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, No 12 (2013), 7012-7022.
    • (2013) Appl. Math. Comput. , vol.219 , Issue.12 , pp. 7012-7022
    • Cermák, J.1    Kisela, T.2    Nechvátal, L.3
  • 9
    • 79551655152 scopus 로고    scopus 로고
    • On (q, h)-analogue of fractional calculus
    • J. Cermák, L. Nechvátal, On (q, h)-analogue of fractional calculus, J. Nonlinear Math. Phys. 17, No 1 (2010), 51-68.
    • (2010) J. Nonlinear Math. Phys. , vol.17 , Issue.1 , pp. 51-68
    • Cermák L, J.1    Nechvátal2
  • 10
    • 0003504382 scopus 로고    scopus 로고
    • 3rd Ed., Undergraduate Texts in Mathematics Springer, New York
    • S. Elaydi, An Introduction to Difference Equations. 3rd Ed., Undergraduate Texts in Mathematics, Springer, New York (2005).
    • (2005) An Introduction to Difference Equations
    • Elaydi, S.1
  • 11
    • 0007324428 scopus 로고    scopus 로고
    • Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type
    • S. Elaydi, S. Murakami, Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J. Differ. Equ. Appl. 2, No 4 (1996), 401-410.
    • (1996) J. Differ. Equ. Appl. , vol.2 , Issue.4 , pp. 401-410
    • Elaydi, S.1    Murakami, S.2
  • 12
    • 79953329384 scopus 로고    scopus 로고
    • Fractional h-difference equations arising from the calculus of variations
    • R.A.C. Ferreira, D.F.M. Torres, Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5, No 1 (2011), 110-121.
    • (2011) Appl. Anal. Discrete Math. , vol.5 , Issue.1 , pp. 110-121
    • Ferreira, R.A.C.1    Torres, D.F.M.2
  • 13
    • 33751534763 scopus 로고    scopus 로고
    • On multistep methods for differential equations of fractional order
    • L. Galeone, R. Garrappa, On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3, No 3 (2006), 565-580.
    • (2006) Mediterr. J. Math. , vol.3 , Issue.3 , pp. 565-580
    • Galeone, L.1    Garrappa, R.2
  • 14
    • 64549112216 scopus 로고    scopus 로고
    • Explicit methods for fractional differential equations and their stability properties
    • L. Galeone, R. Garrappa, Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, No 2 (2009), 548-560.
    • (2009) J. Comput. Appl. Math. , vol.228 , Issue.2 , pp. 548-560
    • Galeone, L.1    Garrappa, R.2
  • 15
    • 84934884254 scopus 로고    scopus 로고
    • An analysis of the stability boundary for a linear fractional difference system
    • to appear
    • T. Kisela, An analysis of the stability boundary for a linear fractional difference system. Math. Bohem. (to appear).
    • Math. Bohem.
    • Kisela, T.1
  • 16
    • 84878697727 scopus 로고    scopus 로고
    • Fractional dynamical system and its linearization theorem
    • C.P. Li, Y. Ma, Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, No 4 (2013), 621-633.
    • (2013) Nonlinear Dyn. , vol.71 , Issue.4 , pp. 621-633
    • Li, C.P.1    Ma, Y.2
  • 17
    • 79953701362 scopus 로고    scopus 로고
    • A survey on the stability of fractional differential equations
    • C.P. Li, F.R. Zhang, A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 27-47.
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , Issue.1 , pp. 27-47
    • Li, C.P.1    Zhang, F.R.2
  • 18
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17, No 3 (1986), 704-719.
    • (1986) SIAM J. Math. Anal. , vol.17 , Issue.3 , pp. 704-719
    • Lubich, C.1
  • 19
    • 0041938913 scopus 로고
    • A stability analysis of convolution quadratures for Abel- Volterra integral equations
    • C. Lubich, A stability analysis of convolution quadratures for Abel- Volterra integral equations. IMA J. Numer. Anal. 6, No 1 (1986), 87-101.
    • (1986) IMA J. Numer. Anal. , vol.6 , Issue.1 , pp. 87-101
    • Lubich, C.1
  • 20
    • 0002731965 scopus 로고    scopus 로고
    • Stability results for fractional differential equations with applications to control processing
    • Lille, France
    • D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France, Vol. 2 (1996), 963-968.
    • (1996) Computational Engineering in Systems and Application Multiconference, IMACS IEEE-SMC , vol.2 , pp. 963-968
    • Matignon, D.1
  • 21
    • 77954349836 scopus 로고    scopus 로고
    • Stability of fractional-order systems with rational orders: A survey
    • I. Petrás, Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269-298; available at http://www.math.bas.bg/~fcaa.
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , Issue.3 , pp. 269-298
    • Petrás, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.