메뉴 건너뛰기




Volumn 18, Issue 2, 2015, Pages 437-458

Asymptotic stability of dynamic equations with two fractional terms: Continuous versus discrete case

Author keywords

Asymptotic stability; Fractional difference equation; Fractional differential equation; Fractional Schur Cohn criterion

Indexed keywords


EID: 84990857128     PISSN: 13110454     EISSN: 13142224     Source Type: Journal    
DOI: 10.1515/fca-2015-0028     Document Type: Article
Times cited : (18)

References (15)
  • 1
    • 84879776323 scopus 로고    scopus 로고
    • On the asymptotic stability of linear system of fractional-order difference equations
    • R. Abu-Saris, Q. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613-629; DOI: 10.2478/s13540-013-0039-2; http://link.springer.com/article/10.2478/s13540-013-0039-2.
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , Issue.3 , pp. 613-629
    • Abu-Saris, R.1    Al-Mdallal, Q.2
  • 3
    • 79958719410 scopus 로고    scopus 로고
    • Linear systems of fractional nabla difference equations
    • F.M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, No 2 (2011), 353-370.
    • (2011) Rocky Mt. J. Math. , vol.41 , Issue.2 , pp. 353-370
    • Atici, F.M.1    Eloe, P.W.2
  • 4
    • 84874100688 scopus 로고    scopus 로고
    • Stability regions for linear fractional differential systems and their discretizations
    • J. Čermák, T. Kisela, L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, No 12 (2013), 7012-7022.
    • (2013) Appl. Math. Comput. , vol.219 , Issue.12 , pp. 7012-7022
    • Čermák, J.1    Kisela, T.2    Nechvátal, L.3
  • 5
    • 84898618639 scopus 로고    scopus 로고
    • Exact and discretized stability of the BagleyTorvik equation
    • J. Čermák, T. Kisela, Exact and discretized stability of the BagleyTorvik equation. J. Comput. Appl. Math. 269 (2014), 53-67.
    • (2014) J. Comput. Appl. Math. , vol.269 , pp. 53-67
    • Čermák, J.1    Kisela, T.2
  • 6
    • 84929521050 scopus 로고    scopus 로고
    • Stability properties of two-term fractional differential equations
    • To appear
    • J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations. Nonlinear Dynam.; DOI 10.1007/s11071-014-1426-x, To appear.
    • Nonlinear Dynam.
    • Čermák, J.1    Kisela, T.2
  • 7
    • 84868283352 scopus 로고    scopus 로고
    • Alternate derivations of the stability region of a difference equation with two delays
    • S.S. Cheng, S.Y. Huang, Alternate derivations of the stability region of a difference equation with two delays. Appl. Math. E-Notes 9 (2009), 225-253.
    • (2009) Appl. Math. E-Notes , vol.9 , pp. 225-253
    • Cheng, S.S.1    Huang, S.Y.2
  • 8
    • 2642564248 scopus 로고    scopus 로고
    • The asymptotic stability of x(n+k)+ax(n)+bx(n-l) = 0
    • F.M. Dannan, The asymptotic stability of x(n+k)+ax(n)+bx(n-l) = 0. J. Difference Equ. Appl. 10, No 6 (2004), 589-599.
    • (2004) J. Difference Equ. Appl. , vol.10 , Issue.6 , pp. 589-599
    • Dannan, F.M.1
  • 9
    • 84904240021 scopus 로고    scopus 로고
    • Stability of the trinomial linear difference equations with two delays
    • M.M. Kipnis, R.M. Nigmatullin, Stability of the trinomial linear difference equations with two delays. Autom. Remote Control 65, No 11 (2004), 1710-1723.
    • (2004) Autom. Remote Control , vol.65 , Issue.11 , pp. 1710-1723
    • Kipnis, M.M.1    Nigmatullin, R.M.2
  • 10
    • 84878697727 scopus 로고    scopus 로고
    • Fractional dynamical system and its linearization theorem
    • C.P. Li, Y. Ma, Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, No 4 (2013), 621-633.
    • (2013) Nonlinear Dyn. , vol.71 , Issue.4 , pp. 621-633
    • Li, C.P.1    Ma, Y.2
  • 11
    • 79953701362 scopus 로고    scopus 로고
    • A survey on the stability of fractional differential equations
    • C.P. Li, F.R. Zhang, A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 27-47.
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , Issue.1 , pp. 27-47
    • Li, C.P.1    Zhang, F.R.2
  • 13
    • 0002731965 scopus 로고    scopus 로고
    • Stability results for fractional differential equations with applications to control processing
    • D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, Lille - France (1996), 963-968.
    • (1996) Computational Engineering in Systems Applications, Lille - France , pp. 963-968
    • Matignon, D.1
  • 14
    • 77954349836 scopus 로고    scopus 로고
    • Stability of fractional-order systems with rational orders: A survey
    • I. Petráš, Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269-298; at http://www.math.bas.bg/fcaa.
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , Issue.3 , pp. 269-298
    • Petráš, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.