-
1
-
-
84879776323
-
On the asymptotic stability of linear system of fractional-order difference equations
-
R. Abu-Saris, Q. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 3 (2013), 613-629; DOI: 10.2478/s13540-013-0039-2; http://link.springer.com/article/10.2478/s13540-013-0039-2.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.3
, pp. 613-629
-
-
Abu-Saris, R.1
Al-Mdallal, Q.2
-
2
-
-
85085399420
-
Discrete fractional calculus with the nabla operator
-
F.M. Atici, P.W. Eloe, Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I, No 3 (2009), 1-12.
-
(2009)
Electron. J. Qual. Theory Differ. Equ., Spec. Ed.
, vol.1
, Issue.3
, pp. 1-12
-
-
Atici, F.M.1
Eloe, P.W.2
-
3
-
-
79958719410
-
Linear systems of fractional nabla difference equations
-
F.M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, No 2 (2011), 353-370.
-
(2011)
Rocky Mt. J. Math.
, vol.41
, Issue.2
, pp. 353-370
-
-
Atici, F.M.1
Eloe, P.W.2
-
4
-
-
84874100688
-
Stability regions for linear fractional differential systems and their discretizations
-
J. Čermák, T. Kisela, L. Nechvátal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219, No 12 (2013), 7012-7022.
-
(2013)
Appl. Math. Comput.
, vol.219
, Issue.12
, pp. 7012-7022
-
-
Čermák, J.1
Kisela, T.2
Nechvátal, L.3
-
5
-
-
84898618639
-
Exact and discretized stability of the BagleyTorvik equation
-
J. Čermák, T. Kisela, Exact and discretized stability of the BagleyTorvik equation. J. Comput. Appl. Math. 269 (2014), 53-67.
-
(2014)
J. Comput. Appl. Math.
, vol.269
, pp. 53-67
-
-
Čermák, J.1
Kisela, T.2
-
6
-
-
84929521050
-
Stability properties of two-term fractional differential equations
-
To appear
-
J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations. Nonlinear Dynam.; DOI 10.1007/s11071-014-1426-x, To appear.
-
Nonlinear Dynam.
-
-
Čermák, J.1
Kisela, T.2
-
7
-
-
84868283352
-
Alternate derivations of the stability region of a difference equation with two delays
-
S.S. Cheng, S.Y. Huang, Alternate derivations of the stability region of a difference equation with two delays. Appl. Math. E-Notes 9 (2009), 225-253.
-
(2009)
Appl. Math. E-Notes
, vol.9
, pp. 225-253
-
-
Cheng, S.S.1
Huang, S.Y.2
-
8
-
-
2642564248
-
The asymptotic stability of x(n+k)+ax(n)+bx(n-l) = 0
-
F.M. Dannan, The asymptotic stability of x(n+k)+ax(n)+bx(n-l) = 0. J. Difference Equ. Appl. 10, No 6 (2004), 589-599.
-
(2004)
J. Difference Equ. Appl.
, vol.10
, Issue.6
, pp. 589-599
-
-
Dannan, F.M.1
-
9
-
-
84904240021
-
Stability of the trinomial linear difference equations with two delays
-
M.M. Kipnis, R.M. Nigmatullin, Stability of the trinomial linear difference equations with two delays. Autom. Remote Control 65, No 11 (2004), 1710-1723.
-
(2004)
Autom. Remote Control
, vol.65
, Issue.11
, pp. 1710-1723
-
-
Kipnis, M.M.1
Nigmatullin, R.M.2
-
10
-
-
84878697727
-
Fractional dynamical system and its linearization theorem
-
C.P. Li, Y. Ma, Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, No 4 (2013), 621-633.
-
(2013)
Nonlinear Dyn.
, vol.71
, Issue.4
, pp. 621-633
-
-
Li, C.P.1
Ma, Y.2
-
11
-
-
79953701362
-
A survey on the stability of fractional differential equations
-
C.P. Li, F.R. Zhang, A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, No 1 (2011), 27-47.
-
(2011)
Eur. Phys. J. Spec. Top.
, vol.193
, Issue.1
, pp. 27-47
-
-
Li, C.P.1
Zhang, F.R.2
-
13
-
-
0002731965
-
Stability results for fractional differential equations with applications to control processing
-
D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, Lille - France (1996), 963-968.
-
(1996)
Computational Engineering in Systems Applications, Lille - France
, pp. 963-968
-
-
Matignon, D.1
-
14
-
-
77954349836
-
Stability of fractional-order systems with rational orders: A survey
-
I. Petráš, Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269-298; at http://www.math.bas.bg/fcaa.
-
(2009)
Fract. Calc. Appl. Anal.
, vol.12
, Issue.3
, pp. 269-298
-
-
Petráš, I.1
|