메뉴 건너뛰기




Volumn , Issue , 2015, Pages 640-646

TwitterHawk: A Feature Bucket Approach to Sentiment Analysis

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; SEMANTICS;

EID: 85013785620     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (19)
  • 6
    • 85122015259 scopus 로고    scopus 로고
    • Teamx: A sentiment analyzer with enhanced lexicon mapping and weighting scheme for unbalanced data
    • Yasuhide Miura, Shigeyuki Sakaki, Keigo Hattori, and Tomoko Ohkuma. 2014. Teamx: A sentiment analyzer with enhanced lexicon mapping and weighting scheme for unbalanced data. SemEval 2014, page 628.
    • (2014) SemEval 2014 , pp. 628
    • Miura, Yasuhide1    Sakaki, Shigeyuki2    Hattori, Keigo3    Ohkuma, Tomoko4
  • 17
    • 85090890113 scopus 로고    scopus 로고
    • Coooolll: A deep learning system for twitter sentiment classification
    • Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou. 2014. Coooolll: A deep learning system for twitter sentiment classification. SemEval 2014, page 208.
    • (2014) SemEval 2014 , pp. 208
    • Tang, Duyu1    Wei, Furu2    Qin, Bing3    Liu, Ting4    Zhou, Ming5
  • 19
    • 85122021495 scopus 로고    scopus 로고
    • Nrc-canada-2014: Recent improvements in the sentiment analysis of tweets
    • Dublin, Ireland, August. Association for Computational Linguistics and Dublin City University
    • Xiaodan Zhu, Svetlana Kiritchenko, and Saif Mohammad. 2014. Nrc-canada-2014: Recent improvements in the sentiment analysis of tweets. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 443-447, Dublin, Ireland, August. Association for Computational Linguistics and Dublin City University.
    • (2014) Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) , pp. 443-447
    • Zhu, Xiaodan1    Kiritchenko, Svetlana2    Mohammad, Saif3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.