메뉴 건너뛰기




Volumn 3, Issue 4, 2013, Pages 232-243

A Hybrid hierarchical approach for brain tissue segmentation by combining brain Atlas and least square support vector machine

Author keywords

Atlas; brain; magnetic resonance imaging; segmentation; support vector machines

Indexed keywords


EID: 85013761364     PISSN: None     EISSN: 22287477     Source Type: Journal    
DOI: 10.4103/2228-7477.128325     Document Type: Article
Times cited : (7)

References (42)
  • 2
    • 33750590274 scopus 로고    scopus 로고
    • 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer′s disease
    • Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, Cummings JL, et al. 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer′s disease. Brain 2006;129:2867-73.
    • (2006) Brain , vol.129 , pp. 2867-2873
    • Apostolova, L.G.1    Dinov, I.D.2    Dutton, R.A.3    Hayashi, K.M.4    Toga, A.W.5    Cummings, J.L.6
  • 3
    • 0031932403 scopus 로고    scopus 로고
    • Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies
    • Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998;172:110-20.
    • (1998) Br J Psychiatry , vol.172 , pp. 110-120
    • Lawrie, S.M.1    Abukmeil, S.S.2
  • 5
    • 0026756067 scopus 로고
    • Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study
    • Shenton ME, Kikinis R, Jolesz FA, Pollak SD, LeMay M, Wible CG, et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 1992;327:604-12.
    • (1992) N Engl J Med , vol.327 , pp. 604-612
    • Shenton, M.E.1    Kikinis, R.2    Jolesz, F.A.3    Pollak, S.D.4    Le May, M.5    Wible, C.G.6
  • 6
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-The methods
    • Ashburner J, Friston KJ. Voxel-based morphometry-The methods. Neuroimage 2000;11:805-21.
    • (2000) Neuroimage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 7
    • 0036420614 scopus 로고    scopus 로고
    • Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging
    • Spinks R, Magnotta VA, Andreasen NC, Albright KC, Ziebell S, Nopoulos P, et al. Manual and automated measurement of the whole thalamus and mediodorsal nucleus using magnetic resonance imaging. Neuroimage 2002;17:631-42.
    • (2002) Neuroimage , vol.17 , pp. 631-642
    • Spinks, R.1    Magnotta, V.A.2    Andreasen, N.C.3    Albright, K.C.4    Ziebell, S.5    Nopoulos, P.6
  • 8
    • 0142260969 scopus 로고    scopus 로고
    • A fully automatic and robust brain MRI tissue classification method
    • Cocosco CA, Zijdenbos AP, Evans AC. A fully automatic and robust brain MRI tissue classification method. Med Image Anal 2003;7:513-27.
    • (2003) Med Image Anal , vol.7 , pp. 513-527
    • Cocosco, C.A.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 9
    • 0027275316 scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys 1993;20:1033-48.
    • (1993) Med Phys , vol.20 , pp. 1033-1048
    • Bezdek, J.C.1    Hall, L.O.2    Clarke, L.P.3
  • 11
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
    • Liew AW, Yan H. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Trans Med Imaging 2003;22:1063-75.
    • (2003) IEEE Trans Med Imaging , vol.22 , pp. 1063-1075
    • Liew, A.W.1    Yan, H.2
  • 13
    • 52649131914 scopus 로고    scopus 로고
    • Minimization of region-scalable fitting energy for image segmentation
    • Li C, Kao CY, Gore JC, Ding Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 2008;17:1940-9.
    • (2008) IEEE Trans Image Process , vol.17 , pp. 1940-1949
    • Li, C.1    Kao, C.Y.2    Gore, J.C.3    Ding, Z.4
  • 14
    • 77951208834 scopus 로고    scopus 로고
    • Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy
    • Wang L, Chen Y, Pan X, Hong X, Xia D. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. J Neurosci Methods 2010;188:316-25.
    • (2010) J Neurosci Methods , vol.188 , pp. 316-325
    • Wang, L.1    Chen, Y.2    Pan, X.3    Hong, X.4    Xia, D.5
  • 21
    • 33846363900 scopus 로고    scopus 로고
    • Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI
    • Zhou Y, Bai J. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 2007;54:122-9.
    • (2007) IEEE Trans Biomed Eng , vol.54 , pp. 122-129
    • Zhou, Y.1    Bai, J.2
  • 27
    • 57649166558 scopus 로고    scopus 로고
    • Research on the segmentation of MRI image based on multi-classification support vector machine
    • Guo L, Liu X, Wu Y, Yan W, Shen X. Research on the segmentation of MRI image based on multi-classification support vector machine. Conf Proc IEEE Eng Med Biol Soc 2007;2007:6020-3.
    • (2007) Conf Proc IEEE Eng Med Biol Soc , vol.2007 , pp. 6020-6023
    • Guo, L.1    Liu, X.2    Wu, Y.3    Yan, W.4    Shen, X.5
  • 28
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9:293-300.
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 29
    • 33846925673 scopus 로고    scopus 로고
    • Adaboost and support vector machines for white matter lesion segmentation in MR images
    • Quddus A, Fieguth P, Basir O. Adaboost and support vector machines for white matter lesion segmentation in MR images. Conf Proc IEEE Eng Med Biol Soc 2005;1:463-6.
    • (2005) Conf Proc IEEE Eng Med Biol Soc , vol.1 , pp. 463-466
    • Quddus, A.1    Fieguth, P.2    Basir, O.3
  • 30
    • 39049098162 scopus 로고    scopus 로고
    • Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine
    • Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol 2008;15:300-13.
    • (2008) Acad Radiol , vol.15 , pp. 300-313
    • Lao, Z.1    Shen, D.2    Liu, D.3    Jawad, A.F.4    Melhem, E.R.5    Launer, L.J.6
  • 31
    • 64949134048 scopus 로고    scopus 로고
    • Fully automated classification of HARDI in vivo data using a support vector machine
    • Schnell S, Saur D, Kreher BW, Hennig J, Burkhardt H, Kiselev VG. Fully automated classification of HARDI in vivo data using a support vector machine. Neuroimage 2009;46:642-51.
    • (2009) Neuroimage , vol.46 , pp. 642-651
    • Schnell, S.1    Saur, D.2    Kreher, B.W.3    Hennig, J.4    Burkhardt, H.5    Kiselev, V.G.6
  • 33
    • 77950187695 scopus 로고    scopus 로고
    • Mix-ratio sampling: Classifying multiclass imbalanced mouse brain images using support vector machines
    • Bae MH, Wu T, Pan R. Mix-ratio sampling: Classifying multiclass imbalanced mouse brain images using support vector machines. Expert Syst Appl 2010;37:4955-65.
    • (2010) Expert Syst Appl , vol.37 , pp. 4955-4965
    • Bae, M.H.1    Wu, T.2    Pan, R.3
  • 36
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Mozer M, Jordan M, Petsche T, editors Cambridge, MA: MIT Press
    • Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T, editors. Neural Information Processing Systems. Vol. 9. Cambridge, MA: MIT Press; 1997.
    • (1997) Neural Information Processing Systems , vol.9
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 37
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic output for support vector machines and comparisons to regularized likelihood methods
    • Cambridge MA: MIT Press
    • Platt JC. Probabilistic output for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers. Cambridge, MA: MIT Press; 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 38
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-55.
    • (2002) Hum Brain Mapp , vol.17 , pp. 143-155
    • Smith, S.M.1
  • 40
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45-57.
    • (2001) IEEE Trans Med Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 41
    • 0000250265 scopus 로고
    • Measures of the amount of ecologic association between species
    • Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297-302.
    • (1945) Ecology , vol.26 , pp. 297-302
    • Dice, L.R.1
  • 42
    • 84980090975 scopus 로고
    • The distribution of flora in the alpine zone
    • Available from
    • Jaccard P. The distribution of flora in the alpine zone. New Phytol 1912;11:37-50. Available from: Http://www.esat.kuleuven.be/sista/lssvmlab/downloads/tutorialv1-8.pdf.
    • (1912) New Phytol , vol.11 , pp. 37-50
    • Jaccard, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.