-
1
-
-
33750844590
-
Mitotic chromosome structure and condensation
-
Belmont AS. Mitotic chromosome structure and condensation. Curr Opin Cell Biol. (2006) 18:632-8. doi: 10.1016/j.ceb.2006.09.007
-
(2006)
Curr Opin Cell Biol
, vol.18
, pp. 632-638
-
-
Belmont, A.S.1
-
2
-
-
0037349338
-
The Making of the mitotic chromosome: modern insights into classical questions
-
Swedlow JR, Hirano T. The Making of the mitotic chromosome: modern insights into classical questions. Mol. Cell. (2003) 11:557-69. doi: 10.1016/S1097-2765(03)00103-5
-
(2003)
Mol. Cell
, vol.11
, pp. 557-569
-
-
Swedlow, J.R.1
Hirano, T.2
-
3
-
-
0035316574
-
Chromosome territories, nuclear architecture gene regulation in mammalian cells
-
Cremer T, Cremer C. Chromosome territories, nuclear architecture gene regulation in mammalian cells. Nat Rev. Genet. (2001) 2:292-301. doi: 10.1038/35066075
-
(2001)
Nat Rev. Genet
, vol.2
, pp. 292-301
-
-
Cremer, T.1
Cremer, C.2
-
4
-
-
0003880161
-
-
4th Edn New York, NY: Garland
-
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell/[Hauptbd.]. 4th Edn New York, NY: Garland (2002)
-
(2002)
Molecular biology of the cell/[Hauptbd.]
-
-
Alberts, B.1
Johnson, A.2
Lewis, J.3
Raff, M.4
Roberts, K.5
Walter, P.6
-
5
-
-
33747615506
-
Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome
-
Jun S, Mulder B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci USA. (2006) 103:12388-93. doi: 10.1073/pnas.0605305103
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 12388-12393
-
-
Jun, S.1
Mulder, B.2
-
6
-
-
79960287556
-
A model for segregation of chromatin after replication: segregation of identical flexible chains in solution
-
Dockhorn R, Sommer J. A model for segregation of chromatin after replication: segregation of identical flexible chains in solution. Biophys J. (2011) 100:2539-47. doi: 10.1016/j.bpj.2011.03.053
-
(2011)
Biophys J
, vol.100
, pp. 2539-2547
-
-
Dockhorn, R.1
Sommer, J.2
-
7
-
-
0037180450
-
Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold
-
Poirier MG, Marko JF. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci USA. (2002) 99:15393-97. doi: 10.1073/pnas.232442599
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 15393-15397
-
-
Poirier, M.G.1
Marko, J.F.2
-
8
-
-
75749147065
-
Topological interactions between ring polymers: Implications for chromatin loops
-
Bohn M, Heermann DW. Topological interactions between ring polymers: Implications for chromatin loops. J Chem Phys. (2010) 132:044904. doi: 10.1063/1.3302812
-
(2010)
J Chem Phys
, vol.132
-
-
Bohn, M.1
Heermann, D.W.2
-
9
-
-
0030885925
-
Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
-
Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell (1997) 91:35-45. doi: 10.1016/S0092-8674(01)80007-6
-
(1997)
Cell
, vol.91
, pp. 35-45
-
-
Michaelis, C.1
Ciosk, R.2
Nasmyth, K.3
-
10
-
-
20644467986
-
Sister chromatid cohesion along arms at centromeres
-
Watanabe Y. Sister chromatid cohesion along arms at centromeres. Trends Genet. (2005) 21:405-12. doi: 10.1016/j.tig.2005.05.009
-
(2005)
Trends Genet
, vol.21
, pp. 405-412
-
-
Watanabe, Y.1
-
11
-
-
0037459376
-
Chromosomal Cohesin forms a ring
-
Gruber S, Haering CH, Nasmyth K. Chromosomal Cohesin forms a ring. Cell (2003) 112:765-77. doi: 10.1016/S0092-8674(03)00162-4
-
(2003)
Cell
, vol.112
, pp. 765-777
-
-
Gruber, S.1
Haering, C.H.2
Nasmyth, K.3
-
12
-
-
47549115780
-
The cohesin ring concatenates sister DNA molecules
-
Haering CH, Farcas A, Arumugam P, Metson J, Nasmyth K. The cohesin ring concatenates sister DNA molecules. Nature (2008) 454:297-301. doi: 10.1038/nature07098
-
(2008)
Nature
, vol.454
, pp. 297-301
-
-
Haering, C.H.1
Farcas, A.2
Arumugam, P.3
Metson, J.4
Nasmyth, K.5
-
13
-
-
58249088468
-
A handcuff model for the cohesin complex
-
Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D. A handcuff model for the cohesin complex. J Cell Biol. (2008) 183:1019-31. doi: 10.1083/jcb.200801157
-
(2008)
J Cell Biol
, vol.183
, pp. 1019-1031
-
-
Zhang, N.1
Kuznetsov, S.G.2
Sharan, S.K.3
Li, K.4
Rao, P.H.5
Pati, D.6
-
14
-
-
80053587192
-
Cohesin's concatenation of sister DNAs maintains their intertwining
-
Farcas A, Uluocak P, Helmhart W, Nasmyth K. Cohesin's concatenation of sister DNAs maintains their intertwining. Mol Cell (2011) 44:97-107
-
(2011)
Mol Cell
, vol.44
, pp. 97-107
-
-
Farcas, A.1
Uluocak, P.2
Helmhart, W.3
Nasmyth, K.4
-
15
-
-
0033578935
-
Identification of cohesin association sites at centromeres along chromosome arms
-
Tanaka T, Cosma MP, Wirth K, Nasmyth K. Identification of cohesin association sites at centromeres along chromosome arms. Cell (1999) 98:847-58. doi: 10.1016/S0092-8674(00)81518-4
-
(1999)
Cell
, vol.98
, pp. 847-858
-
-
Tanaka, T.1
Cosma, M.P.2
Wirth, K.3
Nasmyth, K.4
-
16
-
-
0345060775
-
Building and breaking bridges between sister chromatids
-
Haering CH, Nasmyth K. Building and breaking bridges between sister chromatids. BioEssays (2003) 25:1178-91. doi: 10.1002/bies.10361
-
(2003)
BioEssays
, vol.25
, pp. 1178-1191
-
-
Haering, C.H.1
Nasmyth, K.2
-
17
-
-
3242880374
-
Cohesin relocation from sites of chromosomal loading to places of convergent transcription
-
Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature (2004) 430:573-8. doi: 10.1038/nature02742
-
(2004)
Nature
, vol.430
, pp. 573-578
-
-
Lengronne, A.1
Katou, Y.2
Mori, S.3
Yokobayashi, S.4
Kelly, G.P.5
Itoh, T.6
-
18
-
-
19344366459
-
Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae
-
Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. (2004) 2:E259. doi: 10.1371/journal.pbio.0020259
-
(2004)
PLoS Biol
, vol.2
, pp. E259
-
-
Glynn, E.F.1
Megee, P.C.2
Yu, H.G.3
Mistrot, C.4
Unal, E.5
Koshland, D.E.6
-
19
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
-
Unal E, Heidinger-Pauli JM, Koshland D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science (2007) 317:245-8. doi: 10.1126/science.1140637
-
(2007)
Science
, vol.317
, pp. 245-248
-
-
Unal, E.1
Heidinger-Pauli, J.M.2
Koshland, D.3
-
20
-
-
77954901707
-
Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells
-
Kim B, Li Y, Zhang J, Xi Y, Li Y, Yang T, et al. Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells. J Biol Chem. (2010) 285:22784-92. doi: 10.1074/jbc.M110.134577
-
(2010)
J Biol Chem
, vol.285
, pp. 22784-22792
-
-
Kim, B.1
Li, Y.2
Zhang, J.3
Xi, Y.4
Li, Y.5
Yang, T.6
-
21
-
-
34447549077
-
Postreplicative formation of cohesion is required for repair induced by a single DNA break
-
Ström L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, et al. Postreplicative formation of cohesion is required for repair induced by a single DNA break. Science (2007) 317:242-5. doi: 10.1126/science.1140649
-
(2007)
Science
, vol.317
, pp. 242-245
-
-
Ström, L.1
Karlsson, C.2
Lindroos, H.B.3
Wedahl, S.4
Katou, Y.5
Shirahige, K.6
-
22
-
-
0345034619
-
Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes
-
Houchmandzadeh B, Dimitrov S. Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J Cell Biol. (1999) 145:215-23. doi: 10.1083/jcb.145.2.215
-
(1999)
J Cell Biol
, vol.145
, pp. 215-223
-
-
Houchmandzadeh, B.1
Dimitrov, S.2
-
23
-
-
0033973132
-
Reversible and irreversible unfolding of mitotic newt chromosomes by applied force
-
Poirier M, Eroglu S, Chatenay D, Marko JF. Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. Mol. Biol. Cell. (2000) 11:269-76. doi: 10.1091/mbc.11.1.269
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 269-276
-
-
Poirier, M.1
Eroglu, S.2
Chatenay, D.3
Marko, J.F.4
-
24
-
-
18044402978
-
Probing chromosome structure with dynamic force relaxation
-
Poirier MG, Nemani A, Gupta P, Eroglu S, Marko JF. Probing chromosome structure with dynamic force relaxation. Phys Rev Lett. (2001) 86:360-363. doi: 10.1103/PhysRevLett.86.360
-
(2001)
Phys Rev Lett
, vol.86
, pp. 360-363
-
-
Poirier, M.G.1
Nemani, A.2
Gupta, P.3
Eroglu, S.4
Marko, J.F.5
-
25
-
-
1242317069
-
The mitotic chromosome is an assembly of rigid elastic axes organized by structural maintenance of chromosomes (SMC) proteins and surrounded by a soft chromatin envelope
-
Almagro S, Riveline D, Hirano T, Houchmandzadeh B, Dimitrov S. The mitotic chromosome is an assembly of rigid elastic axes organized by structural maintenance of chromosomes (SMC) proteins and surrounded by a soft chromatin envelope. J Biol Chem. (2004) 279:5118-26. doi: 10.1074/jbc.M307221200
-
(2004)
J Biol Chem
, vol.279
, pp. 5118-5126
-
-
Almagro, S.1
Riveline, D.2
Hirano, T.3
Houchmandzadeh, B.4
Dimitrov, S.5
-
26
-
-
79951860623
-
Micromechanics of human mitotic chromosomes
-
Sun M, Kawamura R, Marko JF. Micromechanics of human mitotic chromosomes. Phys Biol. (2011) 8:015003. doi: 10.1088/1478-3975/8/1/015003
-
(2011)
Phys Biol
, vol.8
-
-
Sun, M.1
Kawamura, R.2
Marko, J.F.3
-
27
-
-
43149118135
-
Micromechanical studies of mitotic chromosomes
-
Marko JF. Micromechanical studies of mitotic chromosomes. Chromosome Res. (2008) 16:469-97. doi: 10.1007/s10577-008-1233-7
-
(2008)
Chromosome Res
, vol.16
, pp. 469-497
-
-
Marko, J.F.1
-
28
-
-
0024071054
-
The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions
-
Carmesin I, Kremer K. The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules (1988) 21:2819-23. doi: 10.1021/ma00187a030
-
(1988)
Macromolecules
, vol.21
, pp. 2819-2823
-
-
Carmesin, I.1
Kremer, K.2
-
29
-
-
18644371834
-
Interdiffusion self-diffusion in polymer mixtures: A Monte Carlo study
-
Deutsch HP, Binder K. Interdiffusion self-diffusion in polymer mixtures: A Monte Carlo study. J Chem Phys. (1991) 94:2294-304. doi: 10.1063/1.459901
-
(1991)
J Chem Phys
, vol.94
, pp. 2294-2304
-
-
Deutsch, H.P.1
Binder, K.2
-
30
-
-
77957867310
-
Diffusion-driven looping provides a consistent framework for chromatin organization
-
Bohn M, Heermann DW. Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE (2010) 5:e12218. doi: 10.1371/journal.pone.0012218
-
(2010)
PLoS ONE
, vol.5
-
-
Bohn, M.1
Heermann, D.W.2
-
31
-
-
84455173322
-
Loops determine the mechanical properties of mitotic chromosomes
-
Zhang Y, Heermann DW. Loops determine the mechanical properties of mitotic chromosomes. PLoS ONE (2011) 6:e29225. doi: 10.1371/journal.pone.0029225
-
(2011)
PLoS ONE
, vol.6
-
-
Zhang, Y.1
Heermann, D.W.2
-
32
-
-
5944256461
-
The Pivot Algorithm: a highly efficient Monte Carlo method for the self-avoiding walk
-
Madras N, Sokal AD. The Pivot Algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J Stat Phys. (1988) 50:109-186. doi: 10.1007/BF01022990
-
(1988)
J Stat Phys
, vol.50
, pp. 109-186
-
-
Madras, N.1
Sokal, A.D.2
-
33
-
-
79952807125
-
Chromatin folding-from biology to polymer models and back
-
Tark-Dame M, van Driel R, Heermann DW. Chromatin folding-from biology to polymer models and back. J Cell Sci. (2011) 124(Pt 6):839-45. doi: 10.1242/jcs.077628
-
(2011)
J Cell Sci
, vol.124
, pp. 839-845
-
-
Tark-Dame, M.1
van Driel, R.2
Heermann, D.W.3
-
34
-
-
77955283768
-
Chromatin higher-order structure and dynamics
-
Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol. (2010) 2:a000596. doi: 10.1101/cshperspect.a000596
-
(2010)
Cold Spring Harb Perspect Biol
, vol.2
-
-
Woodcock, C.L.1
Ghosh, R.P.2
-
35
-
-
34248146555
-
Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes
-
Oliveira RA, Heidmann S, Sunkel CE. Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes. Chromosoma (2007) 116:259-74. doi: 10.1007/s00412-007-0097-5
-
(2007)
Chromosoma
, vol.116
, pp. 259-274
-
-
Oliveira, R.A.1
Heidmann, S.2
Sunkel, C.E.3
-
36
-
-
66749191436
-
Linking topology of tethered polymer rings with applications to chromosome segratation and estimation of the knotting length
-
Marko JF. Linking topology of tethered polymer rings with applications to chromosome segratation and estimation of the knotting length. Phys Rev E. (2009) 79:051905. doi: 10.1103/PhysRevE.79.051905
-
(2009)
Phys Rev E
, vol.79
-
-
Marko, J.F.1
-
37
-
-
0030879072
-
Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration
-
Houchmandzadeh B, Marko JF, Chatenay D, Libchaber A. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol. (1997) 139:1-12. doi: 10.1083/jcb.139.1.1
-
(1997)
J Cell Biol
, vol.139
, pp. 1-12
-
-
Houchmandzadeh, B.1
Marko, J.F.2
Chatenay, D.3
Libchaber, A.4
-
38
-
-
84867070913
-
Complexity of chromatin folding is captured by the strings and binders switch model
-
Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, Pombo A, et al. Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci USA. (2012) 109:16173-8. doi: 10.1073/pnas.1204799109
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 16173-16178
-
-
Barbieri, M.1
Chotalia, M.2
Fraser, J.3
Lavitas, L.M.4
Dostie, J.5
Pombo, A.6
|