-
1
-
-
85013685421
-
-
[1] Luo, Y., Engelmayr, G., Auguste, D.T., da Silva Ferreira, L., Karp, J.M., Saigal, R., Principles of Tissue Engineering, 2007.
-
(2007)
Principles of Tissue Engineering
-
-
Luo, Y.1
Engelmayr, G.2
Auguste, D.T.3
da Silva Ferreira, L.4
Karp, J.M.5
Saigal, R.6
-
2
-
-
4544273208
-
Bone tissue engineering: state of the art and future trends
-
[2] Salgado, A.J., Coutinho, O.P., Reis, R.L., Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4:8 (2004), 743–765.
-
(2004)
Macromol. Biosci.
, vol.4
, Issue.8
, pp. 743-765
-
-
Salgado, A.J.1
Coutinho, O.P.2
Reis, R.L.3
-
3
-
-
79952420018
-
Biomaterials & scaffolds for tissue engineering
-
[3] O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Mater. Today 14:3 (2011), 88–95.
-
(2011)
Mater. Today
, vol.14
, Issue.3
, pp. 88-95
-
-
O'Brien, F.J.1
-
5
-
-
77951832697
-
Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering
-
[5] Ko, H.-F., Sfeir, C., Kumta, P.N., Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philos. Trans. A. Math. Phys. Eng. Sci. 368:1917 (2010), 1981–1997.
-
(2010)
Philos. Trans. A. Math. Phys. Eng. Sci.
, vol.368
, Issue.1917
, pp. 1981-1997
-
-
Ko, H.-F.1
Sfeir, C.2
Kumta, P.N.3
-
6
-
-
0034580476
-
Biomaterial developments for bone tissue engineering
-
[6] Burg, K.J., Porter, S., Kellam, J.F., Biomaterial developments for bone tissue engineering. Biomaterials 21:23 (2000), 2347–2359.
-
(2000)
Biomaterials
, vol.21
, Issue.23
, pp. 2347-2359
-
-
Burg, K.J.1
Porter, S.2
Kellam, J.F.3
-
7
-
-
36248989188
-
Chitosan and its derivatives for tissue engineering applications
-
[7] Kim, I.-Y., Seo, S.-J., Moon, H.-S., Yoo, M.-K., Park, I.-Y., Kim, B.-C., Cho, C.-S., Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26:1 (2008), 1–21.
-
(2008)
Biotechnol. Adv.
, vol.26
, Issue.1
, pp. 1-21
-
-
Kim, I.-Y.1
Seo, S.-J.2
Moon, H.-S.3
Yoo, M.-K.4
Park, I.-Y.5
Kim, B.-C.6
Cho, C.-S.7
-
8
-
-
85013647824
-
Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes
-
[8] Bodin, A., Baeckdahl, H., Fink, H., Gustafsson, L., Risberg, B., Gatenholm, P., Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol. Bioeng. 96:6 (2007), 1199–1210.
-
(2007)
Biotechnol. Bioeng.
, vol.96
, Issue.6
, pp. 1199-1210
-
-
Bodin, A.1
Baeckdahl, H.2
Fink, H.3
Gustafsson, L.4
Risberg, B.5
Gatenholm, P.6
-
9
-
-
33748279136
-
Cellulose-based scaffold materials for cartilage tissue engineering
-
[9] Müller, F.A., Müller, L., Hofmann, I., Greil, P., Wenzel, M.M., Staudenmaier, R., Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:21 (2006), 3955–3963.
-
(2006)
Biomaterials
, vol.27
, Issue.21
, pp. 3955-3963
-
-
Müller, F.A.1
Müller, L.2
Hofmann, I.3
Greil, P.4
Wenzel, M.M.5
Staudenmaier, R.6
-
10
-
-
84911385151
-
Bacterial cellulose production and its industrial applications
-
[10] Keshk, S.M., Bacterial cellulose production and its industrial applications. J. Bioprocess. Biotech. 04:02 (2014), 1–10.
-
(2014)
J. Bioprocess. Biotech.
, vol.4
, Issue.2
, pp. 1-10
-
-
Keshk, S.M.1
-
11
-
-
84884416416
-
Biosynthesis, production and applications of bacterial cellulose
-
[11] Lin, S.P., Loira Calvar, I., Catchmark, J.M., Liu, J.R., Demirci, A., Cheng, K.C., Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:5 (2013), 2191–2219.
-
(2013)
Cellulose
, vol.20
, Issue.5
, pp. 2191-2219
-
-
Lin, S.P.1
Loira Calvar, I.2
Catchmark, J.M.3
Liu, J.R.4
Demirci, A.5
Cheng, K.C.6
-
12
-
-
84925501676
-
Applications of bacterial cellulose and its composites in biomedicine
-
[12] Rajwade, J.M., Paknikar, K.M., Kumbhar, J.V., Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99:6 (2015), 2491–2511.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, Issue.6
, pp. 2491-2511
-
-
Rajwade, J.M.1
Paknikar, K.M.2
Kumbhar, J.V.3
-
13
-
-
33846410643
-
The future prospects of microbial cellulose in biomedical applications
-
[13] Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M., The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1 (2007), 1–12.
-
(2007)
Biomacromolecules
, vol.8
, Issue.1
, pp. 1-12
-
-
Czaja, W.K.1
Young, D.J.2
Kawecki, M.3
Brown, R.M.4
-
14
-
-
24644517577
-
Microbial cellulose — the natural power to heal wounds
-
[14] Czaja, W., Krystynowicz, A., Bielecki, S., Brown, R.M., Microbial cellulose — the natural power to heal wounds. Biomaterials 27:2 (2006), 145–151.
-
(2006)
Biomaterials
, vol.27
, Issue.2
, pp. 145-151
-
-
Czaja, W.1
Krystynowicz, A.2
Bielecki, S.3
Brown, R.M.4
-
15
-
-
67349264090
-
Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications
-
[15] Grande, C.J., Torres, F.G., Gomez, C.M., Carmen Bañó, M., Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5:5 (2009), 1605–1615.
-
(2009)
Acta Biomater.
, vol.5
, Issue.5
, pp. 1605-1615
-
-
Grande, C.J.1
Torres, F.G.2
Gomez, C.M.3
Carmen Bañó, M.4
-
16
-
-
0000478081
-
Emulsion-stabilizing effect of bacterial cellulose
-
[16] Ougiya, H., Watanabe, K., Morinaga, Y., Yoshinaga, F., Emulsion-stabilizing effect of bacterial cellulose. Biosci. Biotechnol. Biochem. vol. 61:April (1997), 1541–1545.
-
(1997)
Biosci. Biotechnol. Biochem.
, vol.61
, Issue.April
, pp. 1541-1545
-
-
Ougiya, H.1
Watanabe, K.2
Morinaga, Y.3
Yoshinaga, F.4
-
17
-
-
3242655507
-
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
-
[17] Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Gatenholm, P., Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:4 (2005), 419–431.
-
(2005)
Biomaterials
, vol.26
, Issue.4
, pp. 419-431
-
-
Svensson, A.1
Nicklasson, E.2
Harrah, T.3
Panilaitis, B.4
Kaplan, D.L.5
Brittberg, M.6
Gatenholm, P.7
-
18
-
-
77956182803
-
Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide
-
[18] Andrade, F.K., Costa, R., Domingues, L., Soares, R., Gama, M., Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater. 6:10 (2010), 4034–4041.
-
(2010)
Acta Biomater.
, vol.6
, Issue.10
, pp. 4034-4041
-
-
Andrade, F.K.1
Costa, R.2
Domingues, L.3
Soares, R.4
Gama, M.5
-
19
-
-
84875799674
-
Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications
-
[19] Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., Hsu, S.H., Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94:1 (2013), 603–611.
-
(2013)
Carbohydr. Polym.
, vol.94
, Issue.1
, pp. 603-611
-
-
Lin, W.C.1
Lien, C.C.2
Yeh, H.J.3
Yu, C.M.4
Hsu, S.H.5
-
20
-
-
33749558615
-
Carbon nanotube applications for tissue engineering
-
[20] Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering. Biomaterials 28:2 (2007), 344–353.
-
(2007)
Biomaterials
, vol.28
, Issue.2
, pp. 344-353
-
-
Harrison, B.S.1
Atala, A.2
-
21
-
-
85013662467
-
Carbon Nanotubes in Bone Tissue Engineering
-
[21] Saffar, K., Jamilpour, N., Rouhi, G., Carbon Nanotubes in Bone Tissue Engineering. Biomed. Eng. (NY), 2008, 477–498.
-
(2008)
Biomed. Eng. (NY)
, pp. 477-498
-
-
Saffar, K.1
Jamilpour, N.2
Rouhi, G.3
-
22
-
-
9644260424
-
Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth
-
[22] Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Morsczeck, C., Thie, M., Giesig, M., Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4:11 (2004), 2233–2236.
-
(2004)
Nano Lett.
, vol.4
, Issue.11
, pp. 2233-2236
-
-
Correa-Duarte, M.A.1
Wagner, N.2
Rojas-Chapana, J.3
Morsczeck, C.4
Thie, M.5
Giesig, M.6
-
23
-
-
35349030396
-
Multiwall carbon nanotube scaffolds for tissue engineering purposes
-
[23] Abarrategi, A., Gutiérrez, M.C., Moreno-Vicente, C., Hortigüela, M.J., Ramos, V., López-Lacomba, J.L., Ferrer, M.L., del Monte, F., Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:1 (2008), 94–102.
-
(2008)
Biomaterials
, vol.29
, Issue.1
, pp. 94-102
-
-
Abarrategi, A.1
Gutiérrez, M.C.2
Moreno-Vicente, C.3
Hortigüela, M.J.4
Ramos, V.5
López-Lacomba, J.L.6
Ferrer, M.L.7
del Monte, F.8
-
24
-
-
27744505741
-
Functionalization of carbon nanotubes
-
[24] Hirsch, A., Vostrowsky, O., Functionalization of carbon nanotubes. Top. Curr. Chem. 245 (2005), 193–237.
-
(2005)
Top. Curr. Chem.
, vol.245
, pp. 193-237
-
-
Hirsch, A.1
Vostrowsky, O.2
-
25
-
-
0036924412
-
Functionalized carbon nanotubes: properties and applications
-
[25] Sun, Y.P., Fu, K.F., Lin, Y., Huang, W.J., Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35:12 (2002), 1096–1104.
-
(2002)
Acc. Chem. Res.
, vol.35
, Issue.12
, pp. 1096-1104
-
-
Sun, Y.P.1
Fu, K.F.2
Lin, Y.3
Huang, W.J.4
-
26
-
-
85013656163
-
Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition
-
[26] Zhang, B., Xing, Y., Li, Z., Zhou, H., Mu, Q., Yan, B., Shim, M., Moore, J., Campbell, P.N., Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition. Biochem. Educ. 6:2 (2002), 285–288.
-
(2002)
Biochem. Educ.
, vol.6
, Issue.2
, pp. 285-288
-
-
Zhang, B.1
Xing, Y.2
Li, Z.3
Zhou, H.4
Mu, Q.5
Yan, B.6
Shim, M.7
Moore, J.8
Campbell, P.N.9
-
27
-
-
84870357920
-
Functionalized carbon nanotubes: biomedical applications
-
[27] Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroǧlu, E., Vig, K., Dennis, V.A., Singh, S.R., Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomedicine 7 (2012), 5361–5374.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 5361-5374
-
-
Vardharajula, S.1
Ali, S.Z.2
Tiwari, P.M.3
Eroǧlu, E.4
Vig, K.5
Dennis, V.A.6
Singh, S.R.7
-
28
-
-
84886502705
-
Carbon nanotubes: Applications in pharmacy and medicine
-
[28] He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P., Pham-Huy, C., Carbon nanotubes: Applications in pharmacy and medicine. Biomed. Res. Int., vol. 2013, 2013.
-
(2013)
Biomed. Res. Int.
, vol.2013
-
-
He, H.1
Pham-Huy, L.A.2
Dramou, P.3
Xiao, D.4
Zuo, P.5
Pham-Huy, C.6
-
29
-
-
78649629524
-
Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications
-
[29] Zimmermann, K.A., Leblanc, J.M., Sheets, K.T., Fox, R.W., Gatenholm, P., Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater. Sci. Eng. C 31:1 (2011), 43–49.
-
(2011)
Mater. Sci. Eng. C
, vol.31
, Issue.1
, pp. 43-49
-
-
Zimmermann, K.A.1
Leblanc, J.M.2
Sheets, K.T.3
Fox, R.W.4
Gatenholm, P.5
-
30
-
-
84893815784
-
Scaffold design for bone regeneration
-
[30] Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E., Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14:1 (2014), 15–56.
-
(2014)
J. Nanosci. Nanotechnol.
, vol.14
, Issue.1
, pp. 15-56
-
-
Polo-Corrales, L.1
Latorre-Esteves, M.2
Ramirez-Vick, J.E.3
-
31
-
-
80052301140
-
Design properties of hydrogel tissue-engineering scaffolds
-
[31] Zhu, J., Marchant, R.E., Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8:5 (2011), 607–626.
-
(2011)
Expert Rev. Med. Devices
, vol.8
, Issue.5
, pp. 607-626
-
-
Zhu, J.1
Marchant, R.E.2
-
32
-
-
0346343355
-
Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements
-
[32] Ruoff, R.S., Qian, D., Liu, W.K., Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Phys. 4:9 (2003), 993–1008.
-
(2003)
Comptes Rendus Phys.
, vol.4
, Issue.9
, pp. 993-1008
-
-
Ruoff, R.S.1
Qian, D.2
Liu, W.K.3
-
33
-
-
33947402609
-
Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes
-
[33] Ding, W., Calabri, L., Kohlhaas, K.M., Chen, X., Dikin, D.A., Ruoff, R.S., Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp. Mech. 47:1 (2007), 25–36.
-
(2007)
Exp. Mech.
, vol.47
, Issue.1
, pp. 25-36
-
-
Ding, W.1
Calabri, L.2
Kohlhaas, K.M.3
Chen, X.4
Dikin, D.A.5
Ruoff, R.S.6
-
34
-
-
0032651458
-
Mechanical properties of carbon nanotubes
-
[34] Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Mechanical properties of carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 69:3 (1999), 255–260.
-
(1999)
Appl. Phys. A Mater. Sci. Process.
, vol.69
, Issue.3
, pp. 255-260
-
-
Salvetat, J.-P.1
Bonard, J.-M.2
Thomson, N.H.3
-
35
-
-
0000992985
-
A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans
-
[35] Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., Yoshinaga, F., A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 60:4 (1996), 575–579.
-
(1996)
Biosci. Biotechnol. Biochem.
, vol.60
, Issue.4
, pp. 575-579
-
-
Matsuoka, M.1
Tsuchida, T.2
Matsushita, K.3
Adachi, O.4
Yoshinaga, F.5
-
36
-
-
0037654632
-
Macroscopic oriented web of single-wall carbon nanotubes
-
[36] Zhao, X., Inoue, S., Jinno, M., Suzuki, T., Ando, Y., Macroscopic oriented web of single-wall carbon nanotubes. Chem. Phys. Lett. 373:3–4 (2003), 266–271.
-
(2003)
Chem. Phys. Lett.
, vol.373
, Issue.3-4
, pp. 266-271
-
-
Zhao, X.1
Inoue, S.2
Jinno, M.3
Suzuki, T.4
Ando, Y.5
-
37
-
-
33751246187
-
Functionalization of fullerenes and carbon nanotubes
-
[37] Hirsch, A., Functionalization of fullerenes and carbon nanotubes. Phys. Status Solidi Basic Res. 243:13 (2006), 3209–3212.
-
(2006)
Phys. Status Solidi Basic Res.
, vol.243
, Issue.13
, pp. 3209-3212
-
-
Hirsch, A.1
-
38
-
-
84862663655
-
Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel
-
[38] de la Cruz, E.F., Zheng, Y., Torres, E., Li, W., Song, W., Burugapalli, K., Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 7:4 (2012), 3577–3590.
-
(2012)
Int. J. Electrochem. Sci.
, vol.7
, Issue.4
, pp. 3577-3590
-
-
de la Cruz, E.F.1
Zheng, Y.2
Torres, E.3
Li, W.4
Song, W.5
Burugapalli, K.6
-
39
-
-
13444256360
-
Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering
-
[39] Jansen, E.J.P., Sladek, R.E.J., Bahar, H., Yaffe, A., Gijbels, M.J., Kuijer, R., Bulstra, S.K., Guldemond, N.A., Binderman, I., Koole, L.H., Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 26:21 (2005), 4423–4431.
-
(2005)
Biomaterials
, vol.26
, Issue.21
, pp. 4423-4431
-
-
Jansen, E.J.P.1
Sladek, R.E.J.2
Bahar, H.3
Yaffe, A.4
Gijbels, M.J.5
Kuijer, R.6
Bulstra, S.K.7
Guldemond, N.A.8
Binderman, I.9
Koole, L.H.10
-
40
-
-
67649829753
-
Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: an experimental study
-
[40] Silva, T.S., Machado, D.C., Viezzer, C., Silva Junior, A.N., Oliveira, M.G., Effect of titanium surface roughness on human bone marrow cell proliferation and differentiation: an experimental study. Acta Cir. Bras. 24:3 (2009), 200–205.
-
(2009)
Acta Cir. Bras.
, vol.24
, Issue.3
, pp. 200-205
-
-
Silva, T.S.1
Machado, D.C.2
Viezzer, C.3
Silva Junior, A.N.4
Oliveira, M.G.5
-
41
-
-
0035239029
-
Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength
-
[41] Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., Missirlis, Y.F., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22:1 (2000), 87–96.
-
(2000)
Biomaterials
, vol.22
, Issue.1
, pp. 87-96
-
-
Deligianni, D.D.1
Katsala, N.D.2
Koutsoukos, P.G.3
Missirlis, Y.F.4
-
42
-
-
0032829861
-
Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene
-
[42] Hatano, K., Inoue, H., Kojo, T., Matsunaga, T., Tsujisawa, T., Uchiyama, C., Uchida, Y., Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25:4 (1999), 439–445.
-
(1999)
Bone
, vol.25
, Issue.4
, pp. 439-445
-
-
Hatano, K.1
Inoue, H.2
Kojo, T.3
Matsunaga, T.4
Tsujisawa, T.5
Uchiyama, C.6
Uchida, Y.7
-
43
-
-
77950688690
-
On implant surfaces: a review of current knowledge and opinions
-
[43] Wennerberg, A., Albrektsson, T., On implant surfaces: a review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants 25:1 (2009), 63–74.
-
(2009)
Int. J. Oral Maxillofac. Implants
, vol.25
, Issue.1
, pp. 63-74
-
-
Wennerberg, A.1
Albrektsson, T.2
-
44
-
-
85051889050
-
Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Citation Accessed Citable Link Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances
-
no. i
-
[44] Ozcelik, H., Hindie, M., Hasan, A., Engin, N., Cell, V., Barthes, J., Özçelik, H., Hindié, M., Ndreu-halili, A., Vrana, N.E., Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Citation Accessed Citable Link Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances. 2014, 2014 no. i.
-
(2014)
, vol.2014
-
-
Ozcelik, H.1
Hindie, M.2
Hasan, A.3
Engin, N.4
Cell, V.5
Barthes, J.6
Özçelik, H.7
Hindié, M.8
Ndreu-halili, A.9
Vrana, N.E.10
-
45
-
-
85013673654
-
NIH Public Access
-
[45] Ding, X., Boney-Montoya, J., Owen, B.M., Bookout, A.L., Coate, C., Mangelsdorf, D.J., Kliewer, S.A., NIH Public Access. 16, 3, 2013, 387–393.
-
(2013)
, vol.16 3
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
46
-
-
84896762505
-
Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective
-
[46] Shao, Y., Fu, J., Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv. Mater. 26:10 (2014), 1494–1533.
-
(2014)
Adv. Mater.
, vol.26
, Issue.10
, pp. 1494-1533
-
-
Shao, Y.1
Fu, J.2
-
47
-
-
0033903984
-
Bacterial cellulose — a masterpiece of nature's arts
-
[47] Iguchi, M., Yamanaka, S., Budhiono, A., Bacterial cellulose — a masterpiece of nature's arts. J. Mater. Sci. 35:2 (2000), 261–270.
-
(2000)
J. Mater. Sci.
, vol.35
, Issue.2
, pp. 261-270
-
-
Iguchi, M.1
Yamanaka, S.2
Budhiono, A.3
-
48
-
-
28744448243
-
Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
-
[48] Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., Gatenholm, P., Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:9 (2006), 2141–2149.
-
(2006)
Biomaterials
, vol.27
, Issue.9
, pp. 2141-2149
-
-
Bäckdahl, H.1
Helenius, G.2
Bodin, A.3
Nannmark, U.4
Johansson, B.R.5
Risberg, B.6
Gatenholm, P.7
-
49
-
-
0028076526
-
Synthesis, surface and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides
-
[49] Lin, H.-B., Cooper, S.L., Synthesis, surface and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. MRS Proc., 331(3), 1993, 105.
-
(1993)
MRS Proc.
, vol.331
, Issue.3
, pp. 105
-
-
Lin, H.-B.1
Cooper, S.L.2
-
50
-
-
84897433303
-
Surface engineered polymeric biomaterials with improved biocontact properties
-
[50] Vladkova, T.G., Surface engineered polymeric biomaterials with improved biocontact properties. International Journal of Polymer Science, 2010, 2010.
-
(2010)
International Journal of Polymer Science
, vol.2010
-
-
Vladkova, T.G.1
-
51
-
-
0038150876
-
Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalate membranes
-
[51] Hamerli, P., Weigel, T., Groth, T., Paul, D., Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalate membranes. Biomaterials 24:22 (2003), 3989–3999.
-
(2003)
Biomaterials
, vol.24
, Issue.22
, pp. 3989-3999
-
-
Hamerli, P.1
Weigel, T.2
Groth, T.3
Paul, D.4
-
52
-
-
84938854802
-
A review of cell adhesion studies for biomedical and biological applications
-
[52] Khalili, A.A., Ahmad, M.R., A review of cell adhesion studies for biomedical and biological applications. Int. J. Mol. Sci. 16:8 (2015), 18149–18184.
-
(2015)
Int. J. Mol. Sci.
, vol.16
, Issue.8
, pp. 18149-18184
-
-
Khalili, A.A.1
Ahmad, M.R.2
-
53
-
-
35848961683
-
Cell — matrix adhesion
-
[53] Berrier, A.L., Yamada, K.M., Cell — matrix adhesion. J. Cell. Physiol. 213:June (2007), 565–573.
-
(2007)
J. Cell. Physiol.
, vol.213
, Issue.June
, pp. 565-573
-
-
Berrier, A.L.1
Yamada, K.M.2
-
54
-
-
84905192362
-
Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions
-
[54] Hirata, H., Sokabe, M., Lim, C.T., Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Prog. Mol. Biol. Transl. Sci. 126 (2014), 135–154.
-
(2014)
Prog. Mol. Biol. Transl. Sci.
, vol.126
, pp. 135-154
-
-
Hirata, H.1
Sokabe, M.2
Lim, C.T.3
-
55
-
-
0347717894
-
Vinculin activation by Talin through helical bundle conversion
-
[55] Izard, T., Evans, G., Borgon, R.A., Rush, C.L., Bricogne, G., Bois, P.R.J., Vinculin activation by Talin through helical bundle conversion. Nature 427:6970 (2004), 171–175.
-
(2004)
Nature
, vol.427
, Issue.6970
, pp. 171-175
-
-
Izard, T.1
Evans, G.2
Borgon, R.A.3
Rush, C.L.4
Bricogne, G.5
Bois, P.R.J.6
-
56
-
-
65249178345
-
Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery
-
[56] Liu, Z., Tabakman, S., Welsher, K., Dai, H., Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2:2 (2009), 85–120.
-
(2009)
Nano Res.
, vol.2
, Issue.2
, pp. 85-120
-
-
Liu, Z.1
Tabakman, S.2
Welsher, K.3
Dai, H.4
|