-
1
-
-
26444485487
-
Size effect on melting temperature of nanosolids
-
W. Qi: Size effect on melting temperature of nanosolids. Phys. B 368, 46 (2005).
-
(2005)
Phys. B
, vol.368
, pp. 46
-
-
Qi, W.1
-
2
-
-
34548286562
-
Effect of particle size on melting of aluminum at nano scales
-
P. Puri and V. Yang: Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C 111, 11776 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 11776
-
-
Puri, P.1
Yang, V.2
-
3
-
-
4244043060
-
Thermodynamical size effect and the structure of metallic clusters
-
J-P. Borel: Thermodynamical size effect and the structure of metallic clusters. Surf. Sci. 106, 1 (1981).
-
(1981)
Surf. Sci.
, vol.106
, pp. 1
-
-
Borel, J.-P.1
-
4
-
-
0348005838
-
Sizedependent melting properties of small tin particles: Nanocalorimetric measurements
-
S. Lai, J. Guo, V. Petrova, G. Ramanath, and L. Allen: Sizedependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 99
-
-
Lai, S.1
Guo, J.2
Petrova, V.3
Ramanath, G.4
Allen, L.5
-
5
-
-
29744434730
-
Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation
-
L. Miao, V.R. Bhethanabotla, and B. Joseph: Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 134109 (2005).
-
(2005)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.72
, pp. 134109
-
-
Miao, L.1
Bhethanabotla, V.R.2
Joseph, B.3
-
6
-
-
34548482479
-
Melting and superheating of crystalline solids: From bulk to nanocrystals
-
Q. Mei and K. Lu: Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175 (2007).
-
(2007)
Prog. Mater. Sci.
, vol.52
, pp. 1175
-
-
Mei, Q.1
Lu, K.2
-
7
-
-
0037418379
-
One-dimensional nanostructures: Synthesis, characterization, and applications
-
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).
-
(2003)
Adv. Mater.
, vol.15
, pp. 353
-
-
Xia, Y.1
Yang, P.2
Sun, Y.3
Wu, Y.4
Mayers, B.5
Gates, B.6
Yin, Y.7
Kim, F.8
Yan, H.9
-
8
-
-
84885464453
-
Thermal conductivity of ZnTe nanowires
-
K. Davami, A. Weathers, N. Kheirabi, B. Mortazavi, M.T. Pettes, L. Shi, J-S. Lee, and M. Meyyappan: Thermal conductivity of ZnTe nanowires. J. Appl. Phys. 114, 134314 (2013).
-
(2013)
J. Appl. Phys.
, vol.114
, pp. 134314
-
-
Davami, K.1
Weathers, A.2
Kheirabi, N.3
Mortazavi, B.4
Pettes, M.T.5
Shi, L.6
Lee, J.-S.7
Meyyappan, M.8
-
9
-
-
84904345452
-
In situ observation of melting behavior of ZnTe nanowires
-
M. Shaygan, T. Gemming, V. Bezugly, G. Cuniberti, J-S. Lee, and M. Meyyappan: In situ observation of melting behavior of ZnTe nanowires. J. Phys. Chem. C 118, 15061 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 15061
-
-
Shaygan, M.1
Gemming, T.2
Bezugly, V.3
Cuniberti, G.4
Lee, J.-S.5
Meyyappan, M.6
-
10
-
-
32044438670
-
Reflow and electrical characteristics of nanoscale solder
-
Z. Gu, H. Ye, D. Smirnova, D. Small, and D.H. Gracias: Reflow and electrical characteristics of nanoscale solder. Small 2, 225 (2006).
-
(2006)
Small
, vol.2
, pp. 225
-
-
Gu, Z.1
Ye, H.2
Smirnova, D.3
Small, D.4
Gracias, D.H.5
-
11
-
-
67149141605
-
Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegmented metal nanowires
-
F. Gao, S. Mukherjee, Q. Cui, and Z. Gu: Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegmented metal nanowires. J. Phys. Chem. C 113, 9546 (2009).
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 9546
-
-
Gao, F.1
Mukherjee, S.2
Cui, Q.3
Gu, Z.4
-
12
-
-
84924310202
-
In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples
-
Q. Yin, F. Gao, Z. Gu, E.A. Stach, and G. Zhou: In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples. Nanoscale 7, 4984 (2015).
-
(2015)
Nanoscale
, vol.7
, pp. 4984
-
-
Yin, Q.1
Gao, F.2
Gu, Z.3
Stach, E.A.4
Zhou, G.5
-
13
-
-
79951593377
-
Synthesis of single crystalline tin nanorods and their application as nanosoldering materials
-
Q. Cui, K. Rajathurai, W. Jia, X. Li, F. Gao, Y. Lei, and Z. Gu: Synthesis of single crystalline tin nanorods and their application as nanosoldering materials. J. Phys. Chem. C 114, 21938 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 21938
-
-
Cui, Q.1
Rajathurai, K.2
Jia, W.3
Li, X.4
Gao, F.5
Lei, Y.6
Gu, Z.7
-
14
-
-
34247851945
-
One-dimensional phase-change nanostructure: Germanium telluride nanowire
-
X. Sun, B. Yu, G. Ng, and M. Meyyappan: One-dimensional phase-change nanostructure: Germanium telluride nanowire. J. Phys. Chem. C 111, 2421 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 2421
-
-
Sun, X.1
Yu, B.2
Ng, G.3
Meyyappan, M.4
-
15
-
-
48849101173
-
Chalcogenide-nanowire-based phase change memory
-
B. Yu, X. Sun, S. Ju, D.B. Janes, and M. Meyyappan: Chalcogenide-nanowire-based phase change memory. IEEE Trans. Nanotechnol. 7, 496 (2008).
-
(2008)
IEEE Trans. Nanotechnol.
, vol.7
, pp. 496
-
-
Yu, B.1
Sun, X.2
Ju, S.3
Janes, D.B.4
Meyyappan, M.5
-
16
-
-
0000262193
-
Equilibrium and thermodynamic properties of grey, white, and liquid tin
-
R. Ravelo and M. Baskes: Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys. Rev. Lett. 79, 2482 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2482
-
-
Ravelo, R.1
Baskes, M.2
-
18
-
-
36149063457
-
The measurement of the thermal expansion of single crystals of tin by an interferometric method
-
B. Childs and S. Weintroub: The measurement of the thermal expansion of single crystals of tin by an interferometric method. Proc. Phys. Soc., London, Sect. B 63, 267 (1950).
-
(1950)
Proc. Phys. Soc., London, Sect. B
, vol.63
, pp. 267
-
-
Childs, B.1
Weintroub, S.2
-
19
-
-
84889771219
-
Temperature variation of the lattice constant and the coefficient of thermal expansion of sodium chlorate
-
V.T. Deshpande and V. Mudholker: Temperature variation of the lattice constant and the coefficient of thermal expansion of sodium chlorate. Acta Crystallogr. 13, 483 (1960).
-
(1960)
Acta Crystallogr.
, vol.13
, pp. 483
-
-
Deshpande, V.T.1
Mudholker, V.2
-
20
-
-
0040859021
-
The thermal expansion mechanism of liquid metals
-
V. Baryakhtar, L. Mikhailova, A. Ilyinskii, A. Romanova, and T. Khristenko: The thermal expansion mechanism of liquid metals. Zh. Eksp. Teor. Fiz. 95, 1404 (1989).
-
(1989)
Zh. Eksp. Teor. Fiz.
, vol.95
, pp. 1404
-
-
Baryakhtar, V.1
Mikhailova, L.2
Ilyinskii, A.3
Romanova, A.4
Khristenko, T.5
-
21
-
-
42749098813
-
Breakup of a fluid thread in a confined geometry: Droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement
-
J.G. Hagedorn, N.S. Martys, and J.F. Douglas: Breakup of a fluid thread in a confined geometry: Droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement. Phys. Rev. E 69, 056312 (2004).
-
(2004)
Phys. Rev. e
, vol.69
, pp. 056312
-
-
Hagedorn, J.G.1
Martys, N.S.2
Douglas, J.F.3
-
22
-
-
11044219716
-
Fragmentation of nanowires driven by Rayleigh instability
-
M.T. Molares, A. Balogh, T. Cornelius, R. Neumann, and C. Trautmann: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004).
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 5337
-
-
Molares, M.T.1
Balogh, A.2
Cornelius, T.3
Neumann, R.4
Trautmann, C.5
-
23
-
-
84910108633
-
Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide
-
Y. Shilyaeva, S. Gavrilov, and L. Matyna: Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide. J. Therm. Anal. Calorim. 118, 937 (2014).
-
(2014)
J. Therm. Anal. Calorim.
, vol.118
, pp. 937
-
-
Shilyaeva, Y.1
Gavrilov, S.2
Matyna, L.3
-
24
-
-
77949540388
-
Melting of Ni nanowires with and without oxide capping
-
Z. Zhou, Y. Zhou, Y. Pan, and C. Xu: Melting of Ni nanowires with and without oxide capping. Acta Mater. 58, 3059 (2010).
-
(2010)
Acta Mater.
, vol.58
, pp. 3059
-
-
Zhou, Z.1
Zhou, Y.2
Pan, Y.3
Xu, C.4
|