메뉴 건너뛰기




Volumn 10, Issue 5, 2016, Pages 1149-1160

How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study

Author keywords

Continuous glucose monitoring; Neural network; Nonlinear modeling; Sensitivity analysis; Signal processing

Indexed keywords

GLUCOSE; INSULIN; ANTIDIABETIC AGENT; GLUCOSE BLOOD LEVEL;

EID: 85012982071     PISSN: None     EISSN: 19322968     Source Type: Journal    
DOI: 10.1177/1932296816654161     Document Type: Article
Times cited : (62)

References (34)
  • 1
    • 79952197615 scopus 로고    scopus 로고
    • Hypoglycemia prevention via pump attenuation and red-yellow-green "traffic" lights using continuous glucose monitoring and insulin pump data
    • Hughes CS, Patek SD, Breton MD, Kovatchev BP. Hypoglycemia prevention via pump attenuation and red-yellow-green "traffic" lights using continuous glucose monitoring and insulin pump data. J Diabetes Sci Technol. 2010;4(5):1146-1155.
    • (2010) J Diabetes Sci Technol. , vol.4 , Issue.5 , pp. 1146-1155
    • Hughes, C.S.1    Patek, S.D.2    Breton, M.D.3    Kovatchev, B.P.4
  • 2
    • 84872192562 scopus 로고    scopus 로고
    • Reduction of number and duration of hypoglycemic events by glucose prediction methods: A proof-of-concept in silico study
    • Zecchin C, Facchinetti A, Sparacino G, Cobelli C. Reduction of number and duration of hypoglycemic events by glucose prediction methods: a proof-of-concept in silico study. Diabetes Technol Ther. 2013;15(1):66-77.
    • (2013) Diabetes Technol Ther. , vol.15 , Issue.1 , pp. 66-77
    • Zecchin, C.1    Facchinetti, A.2    Sparacino, G.3    Cobelli, C.4
  • 3
    • 77954939888 scopus 로고    scopus 로고
    • Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension
    • Buckingham B, Chase HP, Dassau E, et al. Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care. 2010;33(5):1013-1017.
    • (2010) Diabetes Care , vol.33 , Issue.5 , pp. 1013-1017
    • Buckingham, B.1    Chase, H.P.2    Dassau, E.3
  • 4
    • 77955652578 scopus 로고    scopus 로고
    • Real-time hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas
    • Dassau E, Cameron F, Lee H, et al. Real-time hypoglycemia prediction suite using continuous glucose monitoring: a safety net for the artificial pancreas. Diabetes Care. 2010;33(6):1249-1254.
    • (2010) Diabetes Care , vol.33 , Issue.6 , pp. 1249-1254
    • Dassau, E.1    Cameron, F.2    Lee, H.3
  • 5
  • 6
    • 63849301691 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration in humans: Data-driven glucose modeling
    • Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J. Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng. 2009;56(2):246-254.
    • (2009) IEEE Trans Biomed Eng. , vol.56 , Issue.2 , pp. 246-254
    • Gani, A.1    Gribok, A.V.2    Rajaraman, S.3    Ward, W.K.4    Reifman, J.5
  • 7
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng. 2007;54(5):931-937.
    • (2007) IEEE Trans Biomed Eng. , vol.54 , Issue.5 , pp. 931-937
    • Sparacino, G.1    Zanderigo, F.2    Corazza, S.3    Maran, A.4    Facchinetti, A.5    Cobelli, C.6
  • 8
    • 64349107874 scopus 로고    scopus 로고
    • Estimation of future glucose concentrations with subject-specific recursive linear models
    • Eren-Oruklu M, Cinar A, Quinn L, Smith D. Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Ther. 2009;11(4):243-253.
    • (2009) Diabetes Technol Ther. , vol.11 , Issue.4 , pp. 243-253
    • Eren-Oruklu, M.1    Cinar, A.2    Quinn, L.3    Smith, D.4
  • 9
    • 75749130634 scopus 로고    scopus 로고
    • Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
    • Perez-Gandia C, Facchinetti A, Sparacino G, et al. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther. 2010;12(1):81-88.
    • (2010) Diabetes Technol Ther. , vol.12 , Issue.1 , pp. 81-88
    • Perez-Gandia, C.1    Facchinetti, A.2    Sparacino, G.3
  • 10
    • 84863859637 scopus 로고    scopus 로고
    • A meta-learning approach to the regularized learning-case study: Blood glucose prediction
    • Naumova V, Pereverzyev S, Sivananthan S. A meta-learning approach to the regularized learning-case study: blood glucose prediction. Neural Networks. 2012;33(9):181-193.
    • (2012) Neural Networks , vol.33 , Issue.9 , pp. 181-193
    • Naumova, V.1    Pereverzyev, S.2    Sivananthan, S.3
  • 11
    • 77949883528 scopus 로고    scopus 로고
    • Experimental evaluation of a recursive model identification technique for type 1 diabetes
    • Finan D, Doyle F, Palerm C, et al. Experimental evaluation of a recursive model identification technique for type 1 diabetes. J Diabetes Sci Technol. 2009;5(3):1192-1202.
    • (2009) J Diabetes Sci Technol. , vol.5 , Issue.3 , pp. 1192-1202
    • Finan, D.1    Doyle, F.2    Palerm, C.3
  • 12
    • 79953129575 scopus 로고    scopus 로고
    • Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients
    • New York, NY: IEEE
    • Castillo-Estrada G, del Re L, Renard E. Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients. In: 49th IEEE Conference on Decision and Control (CDC). New York, NY: IEEE; 2010:1668-1673.
    • (2010) 49th IEEE Conference on Decision and Control (CDC) , pp. 1668-1673
    • Castillo-Estrada, G.1    Del Re, L.2    Renard, E.3
  • 13
    • 84864447817 scopus 로고    scopus 로고
    • Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms
    • Eren-Oruklu M, Cinar A, Rollins D, Quinn L. Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica. 2012;48(8):1892-1897.
    • (2012) Automatica , vol.48 , Issue.8 , pp. 1892-1897
    • Eren-Oruklu, M.1    Cinar, A.2    Rollins, D.3    Quinn, L.4
  • 15
    • 84855825553 scopus 로고    scopus 로고
    • Realtime adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients
    • Daskalaki E, Prountzou A, Diem P, Mougiakakou S. G. Realtime adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Ther. 2012;14(2):168-174.
    • (2012) Diabetes Technol Ther. , vol.14 , Issue.2 , pp. 168-174
    • Daskalaki, E.1    Prountzou, A.2    Diem, P.3    Mougiakakou, S.G.4
  • 16
    • 84879700650 scopus 로고    scopus 로고
    • Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus
    • Zhao C, Dassau E, Jovanovic L, Zisser H, Doyle F III, Seborg D. Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. J Diabetes Sci Technol. 2012;6(3):617-633.
    • (2012) J Diabetes Sci Technol. , vol.6 , Issue.3 , pp. 617-633
    • Zhao, C.1    Dassau, E.2    Jovanovic, L.3    Zisser, H.4    Doyle, F.5    Seborg, D.6
  • 18
    • 84882272395 scopus 로고    scopus 로고
    • Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression
    • Georga E, Protopappas VC, Ardigo D, et al. Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inform. 2013;17(1):71-81.
    • (2013) IEEE J Biomed Health Inform. , vol.17 , Issue.1 , pp. 71-81
    • Georga, E.1    Protopappas, V.C.2    Ardigo, D.3
  • 19
    • 84948719040 scopus 로고    scopus 로고
    • Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models
    • Georga E, Protopappas V, Polyzos D, Fotiadis D. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput. 2015;53(12):1305-1318.
    • (2015) Med Biol Eng Comput. , vol.53 , Issue.12 , pp. 1305-1318
    • Georga, E.1    Protopappas, V.2    Polyzos, D.3    Fotiadis, D.4
  • 20
    • 79551610188 scopus 로고    scopus 로고
    • Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes
    • Pappada S, Cameron B, Rosman P, et al. Neural network-based real-time prediction of glucose in patients with insulin-dependent diabetes. Diabetes Technol Ther. 2011;13(2):135-141.
    • (2011) Diabetes Technol Ther. , vol.13 , Issue.2 , pp. 135-141
    • Pappada, S.1    Cameron, B.2    Rosman, P.3
  • 21
    • 84861394725 scopus 로고    scopus 로고
    • Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration
    • Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng. 2012;59(6):1550-1560.
    • (2012) IEEE Trans Biomed Eng. , vol.59 , Issue.6 , pp. 1550-1560
    • Zecchin, C.1    Facchinetti, A.2    Sparacino, G.3    De Nicolao, G.4    Cobelli, C.5
  • 22
    • 84887823309 scopus 로고    scopus 로고
    • Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information
    • Zecchin C, Facchinetti A, Sparacino G, Cobelli C. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Programs Biomed. 2014;113(1):144-152.
    • (2014) Comput Methods Programs Biomed. , vol.113 , Issue.1 , pp. 144-152
    • Zecchin, C.1    Facchinetti, A.2    Sparacino, G.3    Cobelli, C.4
  • 23
    • 33845914748 scopus 로고    scopus 로고
    • A system model of oral glucose absorption: Validation on gold standard data
    • Dalla Man C, Camilleri M, Cobelli C. A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng. 2006;53(12 pt 1):2472-2478.
    • (2006) IEEE Trans Biomed Eng. , vol.53 , Issue.12 , pp. 2472-2478
    • Dalla Man, C.1    Camilleri, M.2    Cobelli, C.3
  • 25
    • 4544250123 scopus 로고    scopus 로고
    • Minimal model estimation of glucose absorption and insulin sensitivity from oral test: Validation with a tracer method
    • Dalla Man C, Caumo A, Basu R, Rizza R, Toffolo G, Cobelli C. Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. Am J Physiol Endocrinol Metab. 2004;287(4):E637-E643.
    • (2004) Am J Physiol Endocrinol Metab. , vol.287 , Issue.4 , pp. E637-E643
    • Dalla Man, C.1    Caumo, A.2    Basu, R.3    Rizza, R.4    Toffolo, G.5    Cobelli, C.6
  • 26
    • 34548829642 scopus 로고    scopus 로고
    • Meal simulation model of the glucose-insulin system
    • Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng. 2007;54(10):1740-1749.
    • (2007) IEEE Trans Biomed Eng. , vol.54 , Issue.10 , pp. 1740-1749
    • Dalla Man, C.1    Rizza, R.A.2    Cobelli, C.3
  • 27
    • 33646491431 scopus 로고    scopus 로고
    • Two-way interaction of input variables in the sensitivity analysis of neural network models
    • Gevrey M, Dimopoulos I, Lek S. Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecological Modelling. 2006;195(1-2):43-50.
    • (2006) Ecological Modelling , vol.195 , Issue.1-2 , pp. 43-50
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 28
    • 84876591555 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminum to brass
    • Shojaeefard M, Akbari M, Tahani M, Farhani F. Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminum to brass. Adv Materials Sci Eng. 2013; 2013:574914.
    • (2013) Adv Materials Sci Eng. , vol.2013 , pp. 574914
    • Shojaeefard, M.1    Akbari, M.2    Tahani, M.3    Farhani, F.4
  • 30
    • 79551580499 scopus 로고    scopus 로고
    • A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms
    • Facchinetti A, Sparacino G, Trifoglio E, Cobelli C. A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol Ther. 2011;13(2):111-119.
    • (2011) Diabetes Technol Ther. , vol.13 , Issue.2 , pp. 111-119
    • Facchinetti, A.1    Sparacino, G.2    Trifoglio, E.3    Cobelli, C.4
  • 31
    • 0038421181 scopus 로고    scopus 로고
    • Limitations to subcutaneous insulin administration in type 1 diabetes
    • Chen JW, Christiansen JS, Lauritzen T. Limitations to subcutaneous insulin administration in type 1 diabetes. Diabetes Obes Metab. 2003;5(4):223-233.
    • (2003) Diabetes Obes Metab. , vol.5 , Issue.4 , pp. 223-233
    • Chen, J.W.1    Christiansen, J.S.2    Lauritzen, T.3
  • 33
    • 84884560315 scopus 로고    scopus 로고
    • Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring
    • Zecchin C, Facchinetti A, Sparacino G, et al. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Ther. 2013;15(10):836-844.
    • (2013) Diabetes Technol Ther. , vol.15 , Issue.10 , pp. 836-844
    • Zecchin, C.1    Facchinetti, A.2    Sparacino, G.3
  • 34
    • 0030834435 scopus 로고    scopus 로고
    • Symmetrization of the blood glucose measurement scale and its applications
    • Kovatchev BP, Cox DJ, Gonder-Frederick LA, Clarke W. Symmetrization of the blood glucose measurement scale and its applications. Diabetes Care. 1997;20(11): 1655-1658.
    • (1997) Diabetes Care , vol.20 , Issue.11 , pp. 1655-1658
    • Kovatchev, B.P.1    Cox, D.J.2    Gonder-Frederick, L.A.3    Clarke, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.