-
1
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
-
(2012)
Mol Cell
, vol.46
, Issue.1
, pp. 54-66
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
2
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29-49.
-
(2013)
Annu Rev Biophys
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
3
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 186-191
-
-
Lander, G.C.1
-
4
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.5
, pp. 1380-1387
-
-
Lasker, K.1
-
5
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, Issue.11
, pp. 1062-1067
-
-
Groll, M.1
-
6
-
-
19444387760
-
The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18(5):589-599.
-
(2005)
Mol Cell
, vol.18
, Issue.5
, pp. 589-599
-
-
Förster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
7
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith DM, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27(5):731-744.
-
(2007)
Mol Cell
, vol.27
, Issue.5
, pp. 731-744
-
-
Smith, D.M.1
-
8
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, et al. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30(3):360-368.
-
(2008)
Mol Cell
, vol.30
, Issue.3
, pp. 360-368
-
-
Rabl, J.1
-
9
-
-
67349089027
-
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
-
Funakoshi M, Tomko RJ, Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887-899.
-
(2009)
Cell
, vol.137
, Issue.5
, pp. 887-899
-
-
Funakoshi, M.1
Tomko, R.J.2
Kobayashi, H.3
Hochstrasser, M.4
-
10
-
-
59849083960
-
Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
-
Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389-399.
-
(2009)
Mol Cell
, vol.33
, Issue.3
, pp. 389-399
-
-
Le Tallec, B.1
Barrault, M.B.2
Guérois, R.3
Carré, T.4
Peyroche, A.5
-
11
-
-
65849109465
-
Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones
-
Kaneko T, et al. (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137(5):914-925.
-
(2009)
Cell
, vol.137
, Issue.5
, pp. 914-925
-
-
Kaneko, T.1
-
12
-
-
67149121057
-
Hexameric assembly of the proteasomal ATPases is templated through their C termini
-
Park S, et al. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866-870.
-
(2009)
Nature
, vol.459
, Issue.7248
, pp. 866-870
-
-
Park, S.1
-
13
-
-
67149112112
-
Chaperone-mediated pathway of proteasome regulatory particle assembly
-
Roelofs J, et al. (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861-865.
-
(2009)
Nature
, vol.459
, Issue.7248
, pp. 861-865
-
-
Roelofs, J.1
-
14
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900-913.
-
(2009)
Cell
, vol.137
, Issue.5
, pp. 900-913
-
-
Saeki, Y.1
Toh-E, A.2
Kudo, T.3
Kawamura, H.4
Tanaka, K.5
-
15
-
-
84906791334
-
An inducible chaperone adapts proteasome assembly to stress
-
Hanssum A, et al. (2014) An inducible chaperone adapts proteasome assembly to stress. Mol Cell 55(4):566-577.
-
(2014)
Mol Cell
, vol.55
, Issue.4
, pp. 566-577
-
-
Hanssum, A.1
-
16
-
-
79958076708
-
The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle
-
Sakata E, et al. (2011) The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 42(5):637-649.
-
(2011)
Mol Cell
, vol.42
, Issue.5
, pp. 637-649
-
-
Sakata, E.1
-
17
-
-
84878131964
-
Reconfiguration of the proteasome during chaperone-mediated assembly
-
Park S, et al. (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512-516.
-
(2013)
Nature
, vol.497
, Issue.7450
, pp. 512-516
-
-
Park, S.1
-
18
-
-
84860181809
-
Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
-
Barrault MB, et al. (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109(17):E1001-E1010.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.17
, pp. E1001-E1010
-
-
Barrault, M.B.1
-
19
-
-
84899918113
-
Structural basis for proteasome formation controlled by an assembly chaperone nas2
-
Satoh T, et al. (2014) Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 22(5):731-743.
-
(2014)
Structure
, vol.22
, Issue.5
, pp. 731-743
-
-
Satoh, T.1
-
20
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.7
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
21
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.18
, pp. 7264-7269
-
-
Śledź, P.1
-
22
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.15
, pp. 5544-5549
-
-
Unverdorben, P.1
-
23
-
-
79960658440
-
C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome
-
Kim YC, DeMartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286(30):26652-26666.
-
(2011)
J Biol Chem
, vol.286
, Issue.30
, pp. 26652-26666
-
-
Kim, Y.C.1
DeMartino, G.N.2
-
24
-
-
69949136026
-
Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
-
Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. JBiolChem284(37):24891-24903.
-
(2009)
J Biol Chem
, vol.284
, Issue.37
, pp. 24891-24903
-
-
Thompson, D.1
Hakala, K.2
DeMartino, G.N.3
-
25
-
-
78649811815
-
The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation
-
Kumar B, Kim YC, DeMartino GN (2010) The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J Biol Chem 285(50):39523-39535.
-
(2010)
J Biol Chem
, vol.285
, Issue.50
, pp. 39523-39535
-
-
Kumar, B.1
Kim, Y.C.2
DeMartino, G.N.3
-
26
-
-
80054703106
-
Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
-
Lee SY, De la Mota-Peynado A, Roelofs J (2011) Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286(42):36641-36651.
-
(2011)
J Biol Chem
, vol.286
, Issue.42
, pp. 36641-36651
-
-
Lee, S.Y.1
De La Mota-Peynado, A.2
Roelofs, J.3
-
27
-
-
80555130924
-
An asymmetric interface between the regulatory and core particles of the proteasome
-
Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
-
(2011)
Nat Struct Mol Biol
, vol.18
, Issue.11
, pp. 1259-1267
-
-
Tian, G.1
-
28
-
-
84883488318
-
Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
-
Estrin E, Lopez-Blanco JR, Chacón P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624-1635.
-
(2013)
Structure
, vol.21
, Issue.9
, pp. 1624-1635
-
-
Estrin, E.1
Lopez-Blanco, J.R.2
Chacón, P.3
Martin, A.4
-
29
-
-
84255162055
-
Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining
-
Tomko RJ, Jr, Hochstrasser M (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 44(6):907-917.
-
(2011)
Mol Cell
, vol.44
, Issue.6
, pp. 907-917
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
30
-
-
84893717532
-
The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
-
Tomko RJ, Jr, Hochstrasser M (2014) The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 53(3):433-443.
-
(2014)
Mol Cell
, vol.53
, Issue.3
, pp. 433-443
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
31
-
-
84943612692
-
A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
-
Tomko RJ, Jr, et al. (2015) A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163(2):432-444.
-
(2015)
Cell
, vol.163
, Issue.2
, pp. 432-444
-
-
Tomko, R.J.1
-
32
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare GR, et al. (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149-154.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.1
, pp. 149-154
-
-
Pathare, G.R.1
-
33
-
-
34250194038
-
Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
-
Nakamura Y, et al. (2007) Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun 359(3):503-509.
-
(2007)
Biochem Biophys Res Commun
, vol.359
, Issue.3
, pp. 503-509
-
-
Nakamura, Y.1
-
34
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez D, et al. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489(7415):304-308.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 304-308
-
-
Vilchez, D.1
-
35
-
-
0142215475
-
Global analysis of protein expression in yeast
-
Ghaemmaghami S, et al. (2003) Global analysis of protein expression in yeast. Nature 425(6959):737-741.
-
(2003)
Nature
, vol.425
, Issue.6959
, pp. 737-741
-
-
Ghaemmaghami, S.1
-
36
-
-
77951945222
-
Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly
-
Tomko RJ, Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Mol Cell 38(3):393-403.
-
(2010)
Mol Cell
, vol.38
, Issue.3
, pp. 393-403
-
-
Tomko, R.J.1
Funakoshi, M.2
Schneider, K.3
Wang, J.4
Hochstrasser, M.5
-
37
-
-
84863338481
-
Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails
-
Lee SH, Moon JH, Yoon SK, Yoon JB (2012) Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 287(12):9269-9279.
-
(2012)
J Biol Chem
, vol.287
, Issue.12
, pp. 9269-9279
-
-
Lee, S.H.1
Moon, J.H.2
Yoon, S.K.3
Yoon, J.B.4
-
38
-
-
47749090557
-
Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation
-
Kohlmann S, Schäfer A, Wolf DH (2008) Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J Biol Chem 283(24):16374-16383.
-
(2008)
J Biol Chem
, vol.283
, Issue.24
, pp. 16374-16383
-
-
Kohlmann, S.1
Schäfer, A.2
Wolf, D.H.3
-
39
-
-
78449264099
-
-
Schrödinger, LLC (Schrödinger, LLC, New York), Version 1.3r1
-
Schrödinger, LLC (2010) The PyMOL Molecular Graphics System (Schrödinger, LLC, New York), Version 1.3r1.
-
(2010)
The PyMOL Molecular Graphics System
-
-
-
40
-
-
4444221565
-
UCSF Chimera-a visualization system for exploratory research and analysis
-
Pettersen EF, et al. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605-1612.
-
(2004)
J Comput Chem
, vol.25
, Issue.13
, pp. 1605-1612
-
-
Pettersen, E.F.1
-
41
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.10
, pp. 2642-2647
-
-
Luan, B.1
-
42
-
-
78549252106
-
Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor
-
Özalp VC, Pedersen TR, Nielsen LJ, Olsen LF (2010) Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem 285(48):37579-37588.
-
(2010)
J Biol Chem
, vol.285
, Issue.48
, pp. 37579-37588
-
-
Özalp, V.C.1
Pedersen, T.R.2
Nielsen, L.J.3
Olsen, L.F.4
-
43
-
-
84885428073
-
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
-
Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 20(10):1164-1172.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.10
, pp. 1164-1172
-
-
Beckwith, R.1
Estrin, E.2
Worden, E.J.3
Martin, A.4
-
44
-
-
0033618256
-
Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast
-
Russell SJ, Steger KA, Johnston SA (1999) Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem 274(31):21943-21952.
-
(1999)
J Biol Chem
, vol.274
, Issue.31
, pp. 21943-21952
-
-
Russell, S.J.1
Steger, K.A.2
Johnston, S.A.3
-
45
-
-
84943615255
-
Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly
-
Sokolova V, Li F, Polovin G, Park S (2015) Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci Rep 5:14909.
-
(2015)
Sci Rep
, vol.5
, pp. 14909
-
-
Sokolova, V.1
Li, F.2
Polovin, G.3
Park, S.4
-
46
-
-
80054702676
-
Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
-
Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652-36666.
-
(2011)
J Biol Chem
, vol.286
, Issue.42
, pp. 36652-36666
-
-
Park, S.1
Kim, W.2
Tian, G.3
Gygi, S.P.4
Finley, D.5
-
47
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48(6):1035-1046.
-
(1987)
Cell
, vol.48
, Issue.6
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
48
-
-
20344370277
-
Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
-
Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57-70.
-
(2005)
Methods Mol Biol
, vol.301
, pp. 57-70
-
-
Leggett, D.S.1
Glickman, M.H.2
Finley, D.3
|