메뉴 건너뛰기




Volumn 114, Issue 7, 2017, Pages 1548-1553

Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone

Author keywords

AAA+ ATPase; Assembly; Chaperone; Nas6; Proteasome

Indexed keywords

ADENOSINE TRIPHOSPHATE; CHAPERONE; NAS6 PROTEIN; NUCLEOTIDE; PROTEASOME; UNCLASSIFIED DRUG; NAS6 PROTEIN, S CEREVISIAE; PROTEIN BINDING; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85012942165     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1612922114     Document Type: Article
Times cited : (19)

References (48)
  • 1
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
    • (2012) Mol Cell , vol.46 , Issue.1 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 2
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42:29-49.
    • (2013) Annu Rev Biophys , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 3
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
    • (2012) Nature , vol.482 , Issue.7384 , pp. 186-191
    • Lander, G.C.1
  • 4
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.5 , pp. 1380-1387
    • Lasker, K.1
  • 5
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M, et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062-1067.
    • (2000) Nat Struct Biol , vol.7 , Issue.11 , pp. 1062-1067
    • Groll, M.1
  • 6
    • 19444387760 scopus 로고    scopus 로고
    • The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
    • Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18(5):589-599.
    • (2005) Mol Cell , vol.18 , Issue.5 , pp. 589-599
    • Förster, A.1    Masters, E.I.2    Whitby, F.G.3    Robinson, H.4    Hill, C.P.5
  • 7
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith DM, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27(5):731-744.
    • (2007) Mol Cell , vol.27 , Issue.5 , pp. 731-744
    • Smith, D.M.1
  • 8
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J, et al. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30(3):360-368.
    • (2008) Mol Cell , vol.30 , Issue.3 , pp. 360-368
    • Rabl, J.1
  • 9
    • 67349089027 scopus 로고    scopus 로고
    • Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
    • Funakoshi M, Tomko RJ, Jr, Kobayashi H, Hochstrasser M (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137(5):887-899.
    • (2009) Cell , vol.137 , Issue.5 , pp. 887-899
    • Funakoshi, M.1    Tomko, R.J.2    Kobayashi, H.3    Hochstrasser, M.4
  • 10
    • 59849083960 scopus 로고    scopus 로고
    • Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
    • Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (2009) Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell 33(3):389-399.
    • (2009) Mol Cell , vol.33 , Issue.3 , pp. 389-399
    • Le Tallec, B.1    Barrault, M.B.2    Guérois, R.3    Carré, T.4    Peyroche, A.5
  • 11
    • 65849109465 scopus 로고    scopus 로고
    • Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones
    • Kaneko T, et al. (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137(5):914-925.
    • (2009) Cell , vol.137 , Issue.5 , pp. 914-925
    • Kaneko, T.1
  • 12
    • 67149121057 scopus 로고    scopus 로고
    • Hexameric assembly of the proteasomal ATPases is templated through their C termini
    • Park S, et al. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459(7248):866-870.
    • (2009) Nature , vol.459 , Issue.7248 , pp. 866-870
    • Park, S.1
  • 13
    • 67149112112 scopus 로고    scopus 로고
    • Chaperone-mediated pathway of proteasome regulatory particle assembly
    • Roelofs J, et al. (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459(7248):861-865.
    • (2009) Nature , vol.459 , Issue.7248 , pp. 861-865
    • Roelofs, J.1
  • 14
    • 65849101541 scopus 로고    scopus 로고
    • Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
    • Saeki Y, Toh-E A, Kudo T, Kawamura H, Tanaka K (2009) Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137(5):900-913.
    • (2009) Cell , vol.137 , Issue.5 , pp. 900-913
    • Saeki, Y.1    Toh-E, A.2    Kudo, T.3    Kawamura, H.4    Tanaka, K.5
  • 15
    • 84906791334 scopus 로고    scopus 로고
    • An inducible chaperone adapts proteasome assembly to stress
    • Hanssum A, et al. (2014) An inducible chaperone adapts proteasome assembly to stress. Mol Cell 55(4):566-577.
    • (2014) Mol Cell , vol.55 , Issue.4 , pp. 566-577
    • Hanssum, A.1
  • 16
    • 79958076708 scopus 로고    scopus 로고
    • The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle
    • Sakata E, et al. (2011) The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 42(5):637-649.
    • (2011) Mol Cell , vol.42 , Issue.5 , pp. 637-649
    • Sakata, E.1
  • 17
    • 84878131964 scopus 로고    scopus 로고
    • Reconfiguration of the proteasome during chaperone-mediated assembly
    • Park S, et al. (2013) Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497(7450):512-516.
    • (2013) Nature , vol.497 , Issue.7450 , pp. 512-516
    • Park, S.1
  • 18
    • 84860181809 scopus 로고    scopus 로고
    • Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
    • Barrault MB, et al. (2012) Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109(17):E1001-E1010.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.17 , pp. E1001-E1010
    • Barrault, M.B.1
  • 19
    • 84899918113 scopus 로고    scopus 로고
    • Structural basis for proteasome formation controlled by an assembly chaperone nas2
    • Satoh T, et al. (2014) Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 22(5):731-743.
    • (2014) Structure , vol.22 , Issue.5 , pp. 731-743
    • Satoh, T.1
  • 20
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.7 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 21
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.18 , pp. 7264-7269
    • Śledź, P.1
  • 22
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.15 , pp. 5544-5549
    • Unverdorben, P.1
  • 23
    • 79960658440 scopus 로고    scopus 로고
    • C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome
    • Kim YC, DeMartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286(30):26652-26666.
    • (2011) J Biol Chem , vol.286 , Issue.30 , pp. 26652-26666
    • Kim, Y.C.1    DeMartino, G.N.2
  • 24
    • 69949136026 scopus 로고    scopus 로고
    • Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
    • Thompson D, Hakala K, DeMartino GN (2009) Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. JBiolChem284(37):24891-24903.
    • (2009) J Biol Chem , vol.284 , Issue.37 , pp. 24891-24903
    • Thompson, D.1    Hakala, K.2    DeMartino, G.N.3
  • 25
    • 78649811815 scopus 로고    scopus 로고
    • The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation
    • Kumar B, Kim YC, DeMartino GN (2010) The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J Biol Chem 285(50):39523-39535.
    • (2010) J Biol Chem , vol.285 , Issue.50 , pp. 39523-39535
    • Kumar, B.1    Kim, Y.C.2    DeMartino, G.N.3
  • 26
    • 80054703106 scopus 로고    scopus 로고
    • Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
    • Lee SY, De la Mota-Peynado A, Roelofs J (2011) Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286(42):36641-36651.
    • (2011) J Biol Chem , vol.286 , Issue.42 , pp. 36641-36651
    • Lee, S.Y.1    De La Mota-Peynado, A.2    Roelofs, J.3
  • 27
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
    • (2011) Nat Struct Mol Biol , vol.18 , Issue.11 , pp. 1259-1267
    • Tian, G.1
  • 28
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • Estrin E, Lopez-Blanco JR, Chacón P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624-1635.
    • (2013) Structure , vol.21 , Issue.9 , pp. 1624-1635
    • Estrin, E.1    Lopez-Blanco, J.R.2    Chacón, P.3    Martin, A.4
  • 29
    • 84255162055 scopus 로고    scopus 로고
    • Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining
    • Tomko RJ, Jr, Hochstrasser M (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 44(6):907-917.
    • (2011) Mol Cell , vol.44 , Issue.6 , pp. 907-917
    • Tomko, R.J.1    Hochstrasser, M.2
  • 30
    • 84893717532 scopus 로고    scopus 로고
    • The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
    • Tomko RJ, Jr, Hochstrasser M (2014) The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell 53(3):433-443.
    • (2014) Mol Cell , vol.53 , Issue.3 , pp. 433-443
    • Tomko, R.J.1    Hochstrasser, M.2
  • 31
    • 84943612692 scopus 로고    scopus 로고
    • A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
    • Tomko RJ, Jr, et al. (2015) A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163(2):432-444.
    • (2015) Cell , vol.163 , Issue.2 , pp. 432-444
    • Tomko, R.J.1
  • 32
    • 84856023509 scopus 로고    scopus 로고
    • The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
    • Pathare GR, et al. (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149-154.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.1 , pp. 149-154
    • Pathare, G.R.1
  • 33
    • 34250194038 scopus 로고    scopus 로고
    • Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
    • Nakamura Y, et al. (2007) Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun 359(3):503-509.
    • (2007) Biochem Biophys Res Commun , vol.359 , Issue.3 , pp. 503-509
    • Nakamura, Y.1
  • 34
    • 84866167976 scopus 로고    scopus 로고
    • Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
    • Vilchez D, et al. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489(7415):304-308.
    • (2012) Nature , vol.489 , Issue.7415 , pp. 304-308
    • Vilchez, D.1
  • 35
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami S, et al. (2003) Global analysis of protein expression in yeast. Nature 425(6959):737-741.
    • (2003) Nature , vol.425 , Issue.6959 , pp. 737-741
    • Ghaemmaghami, S.1
  • 36
    • 77951945222 scopus 로고    scopus 로고
    • Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly
    • Tomko RJ, Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Mol Cell 38(3):393-403.
    • (2010) Mol Cell , vol.38 , Issue.3 , pp. 393-403
    • Tomko, R.J.1    Funakoshi, M.2    Schneider, K.3    Wang, J.4    Hochstrasser, M.5
  • 37
    • 84863338481 scopus 로고    scopus 로고
    • Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails
    • Lee SH, Moon JH, Yoon SK, Yoon JB (2012) Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 287(12):9269-9279.
    • (2012) J Biol Chem , vol.287 , Issue.12 , pp. 9269-9279
    • Lee, S.H.1    Moon, J.H.2    Yoon, S.K.3    Yoon, J.B.4
  • 38
    • 47749090557 scopus 로고    scopus 로고
    • Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation
    • Kohlmann S, Schäfer A, Wolf DH (2008) Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J Biol Chem 283(24):16374-16383.
    • (2008) J Biol Chem , vol.283 , Issue.24 , pp. 16374-16383
    • Kohlmann, S.1    Schäfer, A.2    Wolf, D.H.3
  • 39
    • 78449264099 scopus 로고    scopus 로고
    • Schrödinger, LLC (Schrödinger, LLC, New York), Version 1.3r1
    • Schrödinger, LLC (2010) The PyMOL Molecular Graphics System (Schrödinger, LLC, New York), Version 1.3r1.
    • (2010) The PyMOL Molecular Graphics System
  • 40
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera-a visualization system for exploratory research and analysis
    • Pettersen EF, et al. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605-1612.
    • (2004) J Comput Chem , vol.25 , Issue.13 , pp. 1605-1612
    • Pettersen, E.F.1
  • 41
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
    • (2016) Proc Natl Acad Sci USA , vol.113 , Issue.10 , pp. 2642-2647
    • Luan, B.1
  • 42
    • 78549252106 scopus 로고    scopus 로고
    • Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor
    • Özalp VC, Pedersen TR, Nielsen LJ, Olsen LF (2010) Time-resolved measurements of intracellular ATP in the yeast Saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem 285(48):37579-37588.
    • (2010) J Biol Chem , vol.285 , Issue.48 , pp. 37579-37588
    • Özalp, V.C.1    Pedersen, T.R.2    Nielsen, L.J.3    Olsen, L.F.4
  • 43
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 20(10):1164-1172.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.10 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 44
    • 0033618256 scopus 로고    scopus 로고
    • Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast
    • Russell SJ, Steger KA, Johnston SA (1999) Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem 274(31):21943-21952.
    • (1999) J Biol Chem , vol.274 , Issue.31 , pp. 21943-21952
    • Russell, S.J.1    Steger, K.A.2    Johnston, S.A.3
  • 45
    • 84943615255 scopus 로고    scopus 로고
    • Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly
    • Sokolova V, Li F, Polovin G, Park S (2015) Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci Rep 5:14909.
    • (2015) Sci Rep , vol.5 , pp. 14909
    • Sokolova, V.1    Li, F.2    Polovin, G.3    Park, S.4
  • 46
    • 80054702676 scopus 로고    scopus 로고
    • Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
    • Park S, Kim W, Tian G, Gygi SP, Finley D (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286(42):36652-36666.
    • (2011) J Biol Chem , vol.286 , Issue.42 , pp. 36652-36666
    • Park, S.1    Kim, W.2    Tian, G.3    Gygi, S.P.4    Finley, D.5
  • 47
    • 0023666139 scopus 로고
    • The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
    • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48(6):1035-1046.
    • (1987) Cell , vol.48 , Issue.6 , pp. 1035-1046
    • Finley, D.1    Ozkaynak, E.2    Varshavsky, A.3
  • 48
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
    • Leggett DS, Glickman MH, Finley D (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol Biol 301:57-70.
    • (2005) Methods Mol Biol , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.