메뉴 건너뛰기




Volumn 139, Issue , 2017, Pages 404-407

CORAL and Nano-QFAR: Quantitative feature – Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co3O4, and TiO2)

Author keywords

CORAL free software; Nano QSAR; QFAR; QSAR; Quasi SMILES

Indexed keywords

COPPER OXIDE NANOPARTICLE; TITANIUM DIOXIDE NANOPARTICLE; ZINC OXIDE NANOPARTICLE; COBALT; COBALT OXIDE; COPPER; CUPRIC OXIDE; METAL NANOPARTICLE; OXIDE; TITANIUM; TITANIUM DIOXIDE; ZINC OXIDE;

EID: 85012031515     PISSN: 01476513     EISSN: 10902414     Source Type: Journal    
DOI: 10.1016/j.ecoenv.2017.01.054     Document Type: Article
Times cited : (27)

References (31)
  • 2
    • 84884900832 scopus 로고    scopus 로고
    • Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies
    • Gottschalk, F., Sun, T.Y., Nowack, B., Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181 (2013), 287–300.
    • (2013) Environ. Pollut. , vol.181 , pp. 287-300
    • Gottschalk, F.1    Sun, T.Y.2    Nowack, B.3
  • 3
    • 84877793378 scopus 로고    scopus 로고
    • Toxicology of designer/engineered metallic nanoparticles
    • (eds) R. Luque R. Varma Royal Society of Chemistry Cambridge, United Kingdom
    • Hwang, H.M., Ray, P.C., Yu, H., He, X., Toxicology of designer/engineered metallic nanoparticles. (eds) Luque, R., Varma, R., (eds.) In Book: Sustainable Preparation of Metal Nanoparticles: Methods and Applications, 2012, Royal Society of Chemistry, Cambridge, United Kingdom, 190–212.
    • (2012) In Book: Sustainable Preparation of Metal Nanoparticles: Methods and Applications , pp. 190-212
    • Hwang, H.M.1    Ray, P.C.2    Yu, H.3    He, X.4
  • 4
    • 84918498032 scopus 로고    scopus 로고
    • Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions
    • Kleandrova, V.V., Luan, F., González-Díaz, H., Ruso, J.M., Speck-Planche, A., Cordeiro, M.N.D.S., Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ. Sci. Technol. 48:24 (2014), 14686–14694.
    • (2014) Environ. Sci. Technol. , vol.48 , Issue.24 , pp. 14686-14694
    • Kleandrova, V.V.1    Luan, F.2    González-Díaz, H.3    Ruso, J.M.4    Speck-Planche, A.5    Cordeiro, M.N.D.S.6
  • 5
    • 84907334885 scopus 로고    scopus 로고
    • Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions
    • Kleandrova, V.V., Luan, F., Gonzalez-Diaz, H., Ruso, J.M., Melo, A., Speck-Planche, A., Cordeiro, M.N.D.S., Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions. Environ. Int. 73C (2014), 288–294.
    • (2014) Environ. Int. , vol.73C , pp. 288-294
    • Kleandrova, V.V.1    Luan, F.2    Gonzalez-Diaz, H.3    Ruso, J.M.4    Melo, A.5    Speck-Planche, A.6    Cordeiro, M.N.D.S.7
  • 6
    • 84862884659 scopus 로고    scopus 로고
    • Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles
    • Li, Y., Zhang, W., Niu, J.F., Chen, Y.S., Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:6 (2012), 5164–5173.
    • (2012) ACS Nano , vol.6 , Issue.6 , pp. 5164-5173
    • Li, Y.1    Zhang, W.2    Niu, J.F.3    Chen, Y.S.4
  • 7
    • 84884886851 scopus 로고    scopus 로고
    • Predictive modeling of nanomaterial exposure effects in biological systems
    • Liu, X., Tang, K., Harper, S., Harper, B., Steevens, J.A., Xu, R., Predictive modeling of nanomaterial exposure effects in biological systems. Int. J. Nanomed. 8:Suppl 1 (2013), S31–S43.
    • (2013) Int. J. Nanomed. , vol.8 , pp. S31-S43
    • Liu, X.1    Tang, K.2    Harper, S.3    Harper, B.4    Steevens, J.A.5    Xu, R.6
  • 8
    • 84906561362 scopus 로고    scopus 로고
    • Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach
    • Luan, F., Kleandrova, V.V., Gonzalez-Diaz, H., Ruso, J.M., Melo, A., Speck-Planche, A., Cordeiro, M.N.D.S., Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 6 (2014), 10623–10630.
    • (2014) Nanoscale , vol.6 , pp. 10623-10630
    • Luan, F.1    Kleandrova, V.V.2    Gonzalez-Diaz, H.3    Ruso, J.M.4    Melo, A.5    Speck-Planche, A.6    Cordeiro, M.N.D.S.7
  • 9
    • 84908122780 scopus 로고    scopus 로고
    • Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles
    • Melagraki, G., Afantitis, A., Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv. 4 (2014), 50713–50725.
    • (2014) RSC Adv. , vol.4 , pp. 50713-50725
    • Melagraki, G.1    Afantitis, A.2
  • 10
    • 85012028728 scopus 로고    scopus 로고
    • OECD document, 2007. Guidance document on the guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models.
    • OECD document, 2007. Guidance document on the guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models.
  • 11
    • 84941936123 scopus 로고    scopus 로고
    • (Q)SAR modelling of nanomaterial toxicity: a critical review
    • Oksel, C., Ma, C.Y., Liu, J.J., Wilkins, T., Wang, X.Z., (Q)SAR modelling of nanomaterial toxicity: a critical review. Particuology 21 (2015), 1–19.
    • (2015) Particuology , vol.21 , pp. 1-19
    • Oksel, C.1    Ma, C.Y.2    Liu, J.J.3    Wilkins, T.4    Wang, X.Z.5
  • 12
    • 63549112822 scopus 로고    scopus 로고
    • Engineered nanomaterials: where they go,nobody knows
    • Posner, J.D., Engineered nanomaterials: where they go,nobody knows. Nano Today 4 (2009), 114–115.
    • (2009) Nano Today , vol.4 , pp. 114-115
    • Posner, J.D.1
  • 13
    • 73349083717 scopus 로고    scopus 로고
    • Toward the development of “nano-QSARs”: advances and challenges
    • Puzyn, T., Leszczynska, D., Leszczynski, J., Toward the development of “nano-QSARs”: advances and challenges. Small 5 (2009), 2494–2509.
    • (2009) Small , vol.5 , pp. 2494-2509
    • Puzyn, T.1    Leszczynska, D.2    Leszczynski, J.3
  • 14
    • 78349253077 scopus 로고    scopus 로고
    • Comparative study of predictive computational models for nanoparticle induced cytotoxicity
    • Sayes, C., Ivanov, I., Comparative study of predictive computational models for nanoparticle induced cytotoxicity. Risk Anal. 30 (2010), 1723–1734.
    • (2010) Risk Anal. , vol.30 , pp. 1723-1734
    • Sayes, C.1    Ivanov, I.2
  • 15
    • 84896359897 scopus 로고    scopus 로고
    • Nano-QSAR modeling for predicting biological activity of diverse nanomaterials
    • Singh, K.P., Gupta, S., Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv. 4 (2014), 13215–13230.
    • (2014) RSC Adv. , vol.4 , pp. 13215-13230
    • Singh, K.P.1    Gupta, S.2
  • 16
    • 84921519852 scopus 로고    scopus 로고
    • Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model
    • Speck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N.D.S., Computational modeling in nanomedicine: prediction of multiple antibacterial profiles of nanoparticles using a quantitative structure-activity relationship perturbation model. Nanomedicine 10 (2015), 193–204.
    • (2015) Nanomedicine , vol.10 , pp. 193-204
    • Speck-Planche, A.1    Kleandrova, V.V.2    Luan, F.3    Cordeiro, M.N.D.S.4
  • 17
    • 33845296955 scopus 로고    scopus 로고
    • A new approach to the characterization of nanomaterials: predicting Young's modulus by correlation weighting of nanomaterials codes
    • Toropov, A.A., Leszczynski, J., A new approach to the characterization of nanomaterials: predicting Young's modulus by correlation weighting of nanomaterials codes. Chem. Phys. Lett. 433 (2006), 125–129.
    • (2006) Chem. Phys. Lett. , vol.433 , pp. 125-129
    • Toropov, A.A.1    Leszczynski, J.2
  • 18
    • 84900581022 scopus 로고    scopus 로고
    • Optimal descriptor as a translator of eclectic data into endpoint prediction: Mutagenicity of fullerene as a mathematical function of conditions
    • Toropov, A.A., Toropova, A.P., Optimal descriptor as a translator of eclectic data into endpoint prediction: Mutagenicity of fullerene as a mathematical function of conditions. Chemosphere 104 (2014), 262–264.
    • (2014) Chemosphere , vol.104 , pp. 262-264
    • Toropov, A.A.1    Toropova, A.P.2
  • 19
    • 84922673779 scopus 로고    scopus 로고
    • Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes
    • Toropov, A.A., Toropova, A.P., Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes. Chemosphere 124 (2015), 40–46.
    • (2015) Chemosphere , vol.124 , pp. 40-46
    • Toropov, A.A.1    Toropova, A.P.2
  • 20
    • 84942549197 scopus 로고    scopus 로고
    • Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions
    • Toropov, A.A., Toropova, A.P., Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere 139 (2015), 18–22.
    • (2015) Chemosphere , vol.139 , pp. 18-22
    • Toropov, A.A.1    Toropova, A.P.2
  • 21
    • 84934783593 scopus 로고    scopus 로고
    • Use of quasi-SMILES and Monte Carlo optimization to develop quantitative feature property/activity relationships (QFPR/QFAR) for nanomaterials
    • Toropov, A.A., Rallo, R., Toropova, A.P., Use of quasi-SMILES and Monte Carlo optimization to develop quantitative feature property/activity relationships (QFPR/QFAR) for nanomaterials. Curr. Top. Med. Chem. 15 (2015), 1837–1844.
    • (2015) Curr. Top. Med. Chem. , vol.15 , pp. 1837-1844
    • Toropov, A.A.1    Rallo, R.2    Toropova, A.P.3
  • 22
    • 84981354728 scopus 로고    scopus 로고
    • Quasi-SMILES and nano-QFPR: the predictive model for zeta potentials of metal oxide nanoparticles
    • Toropov, A.A., Achary, P.G.R., Toropova, A.P., Quasi-SMILES and nano-QFPR: the predictive model for zeta potentials of metal oxide nanoparticles. Chem. Phys. Lett. 660 (2016), 107–110.
    • (2016) Chem. Phys. Lett. , vol.660 , pp. 107-110
    • Toropov, A.A.1    Achary, P.G.R.2    Toropova, A.P.3
  • 23
    • 84909979851 scopus 로고    scopus 로고
    • Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions
    • Toropova, A.P., Toropov, A.A., Rallo, R., Leszczynska, D., Leszczynski, J., Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol. Environ. Saf. 112 (2015), 39–45.
    • (2015) Ecotoxicol. Environ. Saf. , vol.112 , pp. 39-45
    • Toropova, A.P.1    Toropov, A.A.2    Rallo, R.3    Leszczynska, D.4    Leszczynski, J.5
  • 27
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
    • Weininger, D., SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 (1988), 31–36.
    • (1988) J. Chem. Inf. Comput. Sci. , vol.28 , pp. 31-36
    • Weininger, D.1
  • 28
    • 0000144425 scopus 로고
    • Smiles. 3. Depict. Graphical depiction of chemical structures.
    • Weininger, D., Smiles. 3. Depict. Graphical depiction of chemical structures. J. Chem. Inf. Comput. Sci. 30 (1990), 237–243.
    • (1990) J. Chem. Inf. Comput. Sci. , vol.30 , pp. 237-243
    • Weininger, D.1
  • 30
    • 84952890248 scopus 로고    scopus 로고
    • Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials
    • Winkler, D.A., Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicol. Appl. Pharmacol. 299 (2016), 96–100.
    • (2016) Toxicol. Appl. Pharmacol. , vol.299 , pp. 96-100
    • Winkler, D.A.1
  • 31
    • 84944227879 scopus 로고    scopus 로고
    • Metal oxide nanomaterial QNAR models: available structural descriptors and understanding of toxicity mechanisms
    • Ying, J., Zhang, T., Tang, M., Metal oxide nanomaterial QNAR models: available structural descriptors and understanding of toxicity mechanisms. Nanomaterials 5 (2015), 1620–1637.
    • (2015) Nanomaterials , vol.5 , pp. 1620-1637
    • Ying, J.1    Zhang, T.2    Tang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.