-
1
-
-
44649086378
-
Structural evolution of multisubunit RNA polymerases
-
Werner F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 2008; 16:247-50.
-
(2008)
Trends Microbiol
, vol.16
, pp. 247-250
-
-
Werner, F.1
-
3
-
-
58649104893
-
Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II
-
Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell 2009; 33:192-203.
-
(2009)
Mol Cell
, vol.33
, pp. 192-203
-
-
Ream, T.S.1
Haag, J.R.2
Wierzbicki, A.T.3
Nicora, C.D.4
Norbeck, A.D.5
Zhu, J.K.6
-
4
-
-
34249652975
-
The RPB7 orthologue E' is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation
-
DOI 10.1074/jbc.M611674200
-
Naji S, Grunberg S, Thomm M. The RPB7 orthologue E' is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J Biol Chem 2007; 282:11047-57. (Pubitemid 47100743)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.15
, pp. 11047-11057
-
-
Naji, S.1
Grunberg, S.2
Thomm, M.3
-
5
-
-
24344504002
-
Direct modulation of RNA polymerase core functions by basal transcription factors
-
DOI 10.1128/MCB.25.18.8344-8355.2005
-
Werner F, Weinzierl RO. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol Cell Biol 2005; 25:8344-55. (Pubitemid 41263022)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.18
, pp. 8344-8355
-
-
Werner, F.1
Weinzierl, R.O.J.2
-
6
-
-
0025962218
-
Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro
-
Edwards AM, Kane CM, Young RA, Kornberg RD. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem 1991; 266:71-5.
-
(1991)
J Biol Chem
, vol.266
, pp. 71-75
-
-
Edwards, A.M.1
Kane, C.M.2
Young, R.A.3
Kornberg, R.D.4
-
7
-
-
14844290215
-
Structures of complete RNA polymerase II and its subcomplex, Rpb4/7
-
DOI 10.1074/jbc.M413038200
-
Armache KJ, Mitterweger S, Meinhart A, Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J Biol Chem 2005; 280:7131-4. (Pubitemid 40341269)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.8
, pp. 7131-7134
-
-
Armache, K.-J.1
Mitterweger, S.2
Meinhart, A.3
Cramer, P.4
-
8
-
-
18244371928
-
Rpb4 and Rpb7: A sub-complex integral to multi-subunit RNA polymerases performs a multitude of functions
-
DOI 10.1080/15216540500078905
-
Sampath V, Sadhale P. Rpb4 and Rpb7: a subcomplex integral to multi-subunit RNA polymerases performs a multitude of functions. IUBMB Life 2005; 57:93-102. (Pubitemid 40632299)
-
(2005)
IUBMB Life
, vol.57
, Issue.2
, pp. 93-102
-
-
Sampath, V.1
Sadhale, P.2
-
9
-
-
0025272192
-
RNA polymerase II subunit composition, stoichiometry, and phosphorylation
-
Kolodziej PA, Woychik N, Liao SM, Young RA. RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol 1990; 10:1915-20. (Pubitemid 20138811)
-
(1990)
Molecular and Cellular Biology
, vol.10
, Issue.5
, pp. 1915-1920
-
-
Kolodziej, P.A.1
Woychik, N.2
Liao, S.-M.3
Young, R.A.4
-
10
-
-
0024396228
-
RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth
-
Woychik NA, Young RA. RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth. Mol Cell Biol 1989; 9:2854-9.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 2854-2859
-
-
Woychik, N.A.1
Young, R.A.2
-
11
-
-
69249241850
-
The RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase - Using fluorescence anisotropy to monitor RNAP assembly in vitro
-
Grohmann D, Hirtreiter A, Werner F. The RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase - using fluorescence anisotropy to monitor RNAP assembly in vitro. Biochem J 2009.
-
(2009)
Biochem J
-
-
Grohmann, D.1
Hirtreiter, A.2
Werner, F.3
-
12
-
-
77449091060
-
Molecular mechanisms of RNA polymerase - The F/E (RPB4/7) complex is required for high processivity in vitro
-
Hirtreiter A, Grohmann D, Werner F. Molecular mechanisms of RNA polymerase - the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res 2010; 38:585-96.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 585-596
-
-
Hirtreiter, A.1
Grohmann, D.2
Werner, F.3
-
13
-
-
0028837312
-
The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced
-
Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995; 9:184-90.
-
(1995)
Nat Genet
, vol.9
, pp. 184-190
-
-
Tennyson, C.N.1
Klamut, H.J.2
Worton, R.G.3
-
14
-
-
0035827332
-
Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
-
Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001; 292:1876-82.
-
(2001)
Science
, vol.292
, pp. 1876-1882
-
-
Gnatt, A.L.1
Cramer, P.2
Fu, J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
15
-
-
10944232674
-
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
-
DOI 10.1016/j.molcel.2004.11.040, PII S1097276504007300
-
Kettenberger H, Armache KJ, Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 2004; 16:955-65. (Pubitemid 40018405)
-
(2004)
Molecular Cell
, vol.16
, Issue.6
, pp. 955-965
-
-
Kettenberger, H.1
Armache, K.-J.2
Cramer, P.3
-
16
-
-
73049092277
-
Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex
-
Andrecka J, Treutlein B, Arcusa MA, Muschielok A, Lewis R, Cheung AC, et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res 2009; 37:5803-9.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 5803-5809
-
-
Andrecka, J.1
Treutlein, B.2
Arcusa, M.A.3
Muschielok, A.4
Lewis, R.5
Cheung, A.C.6
-
17
-
-
38349173560
-
Single-molecule tracking of mRNA exiting from RNA polymerase II
-
Andrecka J, Lewis R, Bruckner F, Lehmann E, Cramer P, Michaelis J. Single-molecule tracking of mRNA exiting from RNA polymerase II. Proc Natl Acad Sci USA 2008; 105:135-40.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 135-140
-
-
Andrecka, J.1
Lewis, R.2
Bruckner, F.3
Lehmann, E.4
Cramer, P.5
Michaelis, J.6
-
18
-
-
28544436370
-
Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II
-
DOI 10.1093/nar/gki945
-
Meka H, Werner F, Cordell SC, Onesti S, Brick P. Crystal structure and RNA binding of the Rpb4/Rpb7 subunits of human RNA polymerase II. Nucleic Acids Res 2005; 33:6435-44. (Pubitemid 41742580)
-
(2005)
Nucleic Acids Research
, vol.33
, Issue.19
, pp. 6435-6444
-
-
Meka, H.1
Werner, F.2
Cordell, S.C.3
Onesti, S.4
Brick, P.5
-
19
-
-
0035971082
-
Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation
-
Orlicky SM, Tran PT, Sayre MH, Edwards AM. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem 2001; 276:10097-102.
-
(2001)
J Biol Chem
, vol.276
, pp. 10097-10102
-
-
Orlicky, S.M.1
Tran, P.T.2
Sayre, M.H.3
Edwards, A.M.4
-
20
-
-
30044431985
-
RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit
-
DOI 10.1038/nsmb1026
-
Ujvari A, Luse DS. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat Struct Mol Biol 2006; 13:49-54. (Pubitemid 43049402)
-
(2006)
Nature Structural and Molecular Biology
, vol.13
, Issue.1
, pp. 49-54
-
-
Ujvari, A.1
Luse, D.S.2
-
21
-
-
77951691467
-
RNA-binding to archaeal RNAP subunits F/E: A DEER and FRET study
-
May 5; PMID 20384325 [PubMed - in process]
-
Grohmann D, Klose D, Klare JP, Kay CM, Steinhoff HJ, Werner F. RNA-binding to archaeal RNAP subunits F/E: a DEER and FRET study. J AM Chem Soc. 2010 May 5; 132(17):5954-5. PMID 20384325 [PubMed - in process]
-
(2010)
J AM Chem Soc
, vol.132
, Issue.17
, pp. 5954-5955
-
-
Grohmann, D.1
Klose, D.2
Klare, J.P.3
Kay, C.M.4
Steinhoff, H.J.5
Werner, F.6
-
22
-
-
10644284660
-
A fully recombinant system for activator-dependent archaeal transcription
-
DOI 10.1074/jbc.C400446200
-
Ouhammouch M, Werner F, Weinzierl RO, Geiduschek EP. A fully recombinant system for activator-dependent archaeal transcription. J Biol Chem 2004; 279:51719-21. (Pubitemid 39656536)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.50
, pp. 51719-51721
-
-
Ouhammouch, M.1
Werner, F.2
Weinzierl, R.O.J.3
Geiduschek, E.P.4
-
23
-
-
0036753399
-
A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription
-
DOI 10.1016/S1097-2765(02)00629-9
-
Werner F, Weinzierl RO. A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 2002; 10:635-46. (Pubitemid 35284179)
-
(2002)
Molecular Cell
, vol.10
, Issue.3
, pp. 635-646
-
-
Werner, F.1
Weinzierl, R.O.J.2
-
25
-
-
28844477575
-
Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences
-
Santangelo TJ, Reeve JN. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 2006; 355:196-210.
-
(2006)
J Mol Biol
, vol.355
, pp. 196-210
-
-
Santangelo, T.J.1
Reeve, J.N.2
-
26
-
-
38849140302
-
A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea
-
DOI 10.1111/j.1365-2958.2007.06084.x
-
Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2008; 67:958-70. (Pubitemid 351207327)
-
(2008)
Molecular Microbiology
, vol.67
, Issue.5
, pp. 958-970
-
-
Spitalny, P.1
Thomm, M.2
-
27
-
-
37349115934
-
An allosteric path to transcription termination
-
Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E. An allosteric path to transcription termination. Mol Cell 2007; 28:991-1001.
-
(2007)
Mol Cell
, vol.28
, pp. 991-1001
-
-
Epshtein, V.1
Cardinale, C.J.2
Ruckenstein, A.E.3
Borukhov, S.4
Nudler, E.5
-
28
-
-
74549191169
-
An allosteric mechanism of Rho-dependent transcription termination
-
Epshtein V, Dutta D, Wade J, Nudler E. An allosteric mechanism of Rho-dependent transcription termination. Nature 2010; 463:245-9.
-
(2010)
Nature
, vol.463
, pp. 245-249
-
-
Epshtein, V.1
Dutta, D.2
Wade, J.3
Nudler, E.4
-
29
-
-
33846914726
-
The regulatory roles and mechanism of transcriptional pausing
-
DOI 10.1042/BST0341062
-
Landick R. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 2006; 34:1062-6. (Pubitemid 46768989)
-
(2006)
Biochemical Society Transactions
, vol.34
, Issue.6
, pp. 1062-1066
-
-
Landick, R.1
-
30
-
-
40449131926
-
Polarity in archaeal operon transcription in Thermococcus kodakaraensis
-
Santangelo TJ, Cubonova L, Matsumi R, Atomi H, Imanaka T, Reeve JN. Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J Bacteriol 2008; 190:2244-8.
-
(2008)
J Bacteriol
, vol.190
, pp. 2244-2248
-
-
Santangelo, T.J.1
Cubonova, L.2
Matsumi, R.3
Atomi, H.4
Imanaka, T.5
Reeve, J.N.6
-
31
-
-
77955059733
-
Spt4/5 Stimulates Transcription Elongation Through the RNA Polymerase Clamp Coiled Coil Motif
-
in press
-
Hirtreiter A, Damsma F, Cheung A, Klose D, Grohmann D, Vojnic, et al. Spt4/5 Stimulates Transcription Elongation Through The RNA Polymerase Clamp Coiled Coil Motif. NAR (in press) 2010.
-
(2010)
NAR
-
-
Hirtreiter, A.1
Damsma, F.2
Cheung, A.3
Klose, D.4
Vojnic, G.D.5
-
32
-
-
34147155174
-
Structural basis for converting a general transcription factor into an operon-specific virulence regulator
-
Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV, Vassylyev DG, et al. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol Cell 2007; 26:117-29.
-
(2007)
Mol Cell
, vol.26
, pp. 117-129
-
-
Belogurov, G.A.1
Vassylyeva, M.N.2
Svetlov, V.3
Klyuyev, S.4
Grishin, N.V.5
Vassylyev, D.G.6
-
33
-
-
67650676737
-
Two Structurally Independent Domains of E. coli NusG Create Regulatory Plasticity via Distinct Interactions with RNA Polymerase and Regulators
-
Mooney RA, Schweimer K, Roesch P, Gottesman M, Landick R. Two Structurally Independent Domains of E. coli NusG Create Regulatory Plasticity via Distinct Interactions with RNA Polymerase and Regulators. J Mol Biol 2009.
-
(2009)
J Mol Biol
-
-
Mooney, R.A.1
Schweimer, K.2
Roesch, P.3
Gottesman, M.4
Landick, R.5
-
34
-
-
40349114502
-
The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3′ processing factors
-
Runner VM, Podolny V, Buratowski S. The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3′ processing factors. Mol Cell Biol 2008; 28:1883-91.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 1883-1891
-
-
Runner, V.M.1
Podolny, V.2
Buratowski, S.3
-
35
-
-
0030443623
-
Control of transcription termination in prokaryotes
-
Henkin TM. Control of transcription termination in prokaryotes. Annu Rev Genet 1996; 30:35-57.
-
(1996)
Annu Rev Genet
, vol.30
, pp. 35-57
-
-
Henkin, T.M.1
-
36
-
-
1342325469
-
In vivo effect of NusB and NusG on rRNA transcription antitermination
-
Torres M, Balada JM, Zellars M, Squires C, Squires CL. In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 2004; 186:1304-10.
-
(2004)
J Bacteriol
, vol.186
, pp. 1304-1310
-
-
Torres, M.1
Balada, J.M.2
Zellars, M.3
Squires, C.4
Squires, C.L.5
-
37
-
-
55749096593
-
The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase
-
Deighan P, Diez CM, Leibman M, Hochschild A, Nickels BE. The bacteriophage lambda Q antiterminator protein contacts the beta-flap domain of RNA polymerase. Proc Natl Acad Sci USA 2008; 105:15305-10.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15305-15310
-
-
Deighan, P.1
Diez, C.M.2
Leibman, M.3
Hochschild, A.4
Nickels, B.E.5
-
38
-
-
41349094797
-
Transcription regulation through promoter-proximal pausing of RNA polymerase II
-
Core LJ, Lis JT. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 2008; 319:1791-2.
-
(2008)
Science
, vol.319
, pp. 1791-1792
-
-
Core, L.J.1
Lis, J.T.2
-
39
-
-
43049152845
-
Poised RNA polymerase II gives pause for thought
-
Margaritis T, Holstege FC. Poised RNA polymerase II gives pause for thought. Cell 2008; 133:581-4.
-
(2008)
Cell
, vol.133
, pp. 581-584
-
-
Margaritis, T.1
Holstege, F.C.2
-
40
-
-
58149312711
-
Regulator trafficking bacterial transcription units in vivo
-
Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. Regulator trafficking bacterial transcription units in vivo. Mol Cell 2009; 33:97-108.
-
(2009)
Mol Cell
, vol.33
, pp. 97-108
-
-
Mooney, R.A.1
Davis, S.E.2
Peters, J.M.3
Rowland, J.L.4
Ansari, A.Z.5
Landick, R.6
-
41
-
-
30044449636
-
Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs
-
Kettenberger H, Eisenfuhr A, Brueckner F, Theis M, Famulok M, Cramer P. Structure of an RNA polymerase II-RNA inhibitor complex elucidates transcription regulation by noncoding RNAs. Nat Struct Mol Biol 2006; 13:44-8.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 44-48
-
-
Kettenberger, H.1
Eisenfuhr, A.2
Brueckner, F.3
Theis, M.4
Famulok, M.5
Cramer, P.6
-
42
-
-
70450171352
-
RNA polymerase II-TFIIB structure and mechanism of transcription initiation
-
Kostrewa D, Zeller ME, Armache KJ, Seizl M, Leike K, Thomm M, Cramer P. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30.
-
(2009)
Nature
, vol.462
, pp. 323-330
-
-
Kostrewa, D.1
Zeller, M.E.2
Armache, K.J.3
Seizl, M.4
Leike, K.5
Thomm, M.6
Cramer, P.7
-
43
-
-
2042475439
-
Structural basis for transcription regulation by alarmone ppGpp
-
Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, et al. Structural basis for transcription regulation by alarmone ppGpp. Cell 2004; 117:299-310.
-
(2004)
Cell
, vol.117
, pp. 299-310
-
-
Artsimovitch, I.1
Patlan, V.2
Sekine, S.3
Vassylyeva, M.N.4
Hosaka, T.5
Ochi, K.6
-
44
-
-
66249122044
-
Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure
-
Korkhin Y, Unligil UM, Littlefield O, Nelson Stuart DI, Sigler PB, et al. Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure. PLoS Biol 2009; 7:102.
-
(2009)
PLoS Biol
, vol.7
, pp. 102
-
-
Korkhin, Y.1
Unligil, U.M.2
Littlefield, O.3
Nelson Stuart, D.I.4
Sigler, P.B.5
-
45
-
-
1142310578
-
Structural basis of transcription: Separation of RNA from DNA by RNA polymerase II
-
Westover KD, Bushnell DA, Kornberg RD. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 2004; 303:1014-6.
-
(2004)
Science
, vol.303
, pp. 1014-1016
-
-
Westover, K.D.1
Bushnell, D.A.2
Kornberg, R.D.3
-
46
-
-
56149121056
-
A nano-positioning system for macromolecular structural analysis
-
Muschielok A, Andrecka J, Jawhari A, Bruckner Cramer P, Michaelis J. A nano-positioning system for macromolecular structural analysis. Nat Methods 2008; 5:965-71.
-
(2008)
Nat Methods
, vol.5
, pp. 965-971
-
-
Muschielok, A.1
Andrecka, J.2
Jawhari, A.3
Bruckner Cramer, P.4
Michaelis, J.5
|