-
1
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries
-
Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710-721 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.-W.1
Seo, D.-H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
2
-
-
84873405642
-
Sodium-ion batteries
-
Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947-958 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
3
-
-
79960898109
-
Challenges for Na-ion negative electrodes
-
Chevrier, V. L. & Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 158, A1011-A1014 (2011).
-
(2011)
J. Electrochem. Soc.
, vol.158
-
-
Chevrier, V.L.1
Ceder, G.2
-
4
-
-
0024068597
-
Electrochemical intercalation of sodium in graphite
-
Ge, P. & Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 28-30, 1172-1175 (1988).
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
5
-
-
0033751756
-
High capacity anode materials for rechargeable sodium-ion batteries
-
Stevens, D. A. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271-1273 (2000).
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
7
-
-
0037025882
-
Electrochemical insertion of sodium into hard carbons
-
DOI 10.1016/S0013-4686(02)00250-5, PII S0013468602002505
-
Thomas, P. & Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 47, 3303-3307 (2002). (Pubitemid 34867159)
-
(2002)
Electrochimica Acta
, vol.47
, Issue.20
, pp. 3303-3307
-
-
Thomas, P.1
Billaud, D.2
-
8
-
-
18144413985
-
Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries
-
DOI 10.1149/1.1870612
-
Alcantara, R., Lavela, P., Ortiz, G. F. & Tirado, J. L. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodiumion batteries. Electrochem. Solid-State Lett. 8, A222-A225 (2005). (Pubitemid 40612145)
-
(2005)
Electrochemical and Solid-State Letters
, vol.8
, Issue.4
-
-
Alcantara, R.1
Lavela, P.2
Ortiz, G.F.3
Tirado, J.L.4
-
9
-
-
80054830129
-
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
-
Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859-3867 (2011).
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3859-3867
-
-
Komaba, S.1
-
10
-
-
84873406655
-
Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance
-
Wang, Z. et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55, 328-334 (2013).
-
(2013)
Carbon
, vol.55
, pp. 328-334
-
-
Wang, Z.1
-
11
-
-
84871377031
-
Cu2Sb thin films as anode for Na-ion batteries
-
Baggetto, L., Allcorn, E., Manthiram, A. & Veith, G. M. Cu2Sb thin films as anode for Na-ion batteries. Electrochem. Commun. 27, 168-171 (2013).
-
(2013)
Electrochem. Commun.
, vol.27
, pp. 168-171
-
-
Baggetto, L.1
Allcorn, E.2
Manthiram, A.3
Veith, G.M.4
-
12
-
-
84862527593
-
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
-
Qian, J. et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070-7072 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 7070-7072
-
-
Qian, J.1
-
13
-
-
84871591420
-
Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism
-
Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805-20811 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 20805-20811
-
-
Darwiche, A.1
-
14
-
-
84863230428
-
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
-
Xiao, L. et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321-3323 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 3321-3323
-
-
Xiao, L.1
-
15
-
-
84869865643
-
SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries
-
Wu, L. et al. SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. Electrochim. Acta 87, 41-45 (2013).
-
(2013)
Electrochim. Acta
, vol.87
, pp. 41-45
-
-
Wu, L.1
-
16
-
-
84869886310
-
High-performance Sn@carbon nanocomposite anode for lithium batteries
-
Meschini, I. et al. High-performance Sn@carbon nanocomposite anode for lithium batteries. J. Power Sources 226, 241-248 (2013).
-
(2013)
J. Power Sources
, vol.226
, pp. 241-248
-
-
Meschini, I.1
-
17
-
-
84862685746
-
Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
-
Komaba, S. et al. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem. Commun. 21, 65-68 (2012).
-
(2012)
Electrochem. Commun.
, vol.21
, pp. 65-68
-
-
Komaba, S.1
-
18
-
-
84869868027
-
Tin and graphite based nanocomposites: Potential anode for sodium ion batteries
-
Datta, M. K. et al. Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J. Power Sources 225, 316-322 (2013).
-
(2013)
J. Power Sources
, vol.225
, pp. 316-322
-
-
Datta, M.K.1
-
19
-
-
84873040979
-
SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries
-
Wang, Y., Su, D., Wang, C. & Wang, G. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 29, 8-11 (2013).
-
(2013)
Electrochem. Commun.
, vol.29
, pp. 8-11
-
-
Wang, Y.1
Su, D.2
Wang, C.3
Wang, G.4
-
20
-
-
84876527043
-
SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
-
Su, D., Ahn, H.-J. & Wang, G. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 49, 3131-3133 (2013).
-
(2013)
Chem. Commun.
, vol.49
, pp. 3131-3133
-
-
Su, D.1
Ahn, H.-J.2
Wang, G.3
-
21
-
-
84861201382
-
High capacity Sb2O4 thin film electrodes for rechargeable sodium battery
-
Sun, Q., Ren, Q.-Q., Li, H. & Fu, Z.-W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 13, 1462-1464 (2011).
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 1462-1464
-
-
Sun, Q.1
Ren, Q.-Q.2
Li, H.3
Fu, Z.-W.4
-
22
-
-
84878700307
-
A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries
-
Wu, L. et al. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1, 7181-7184 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7181-7184
-
-
Wu, L.1
-
23
-
-
77949557192
-
Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries
-
Park, C.-M., Hwa, Y., Sung, N.-E. & Sohn, H.-J. Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 20, 1097-1102 (2010).
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 1097-1102
-
-
Park, C.-M.1
Hwa, Y.2
Sung, N.-E.3
Sohn, H.-J.4
-
24
-
-
84871535526
-
Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode
-
Prikhodchenko, P. V. et al. Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode. Chem. Mater. 24, 4750-4757 (2012).
-
(2012)
Chem. Mater.
, vol.24
, pp. 4750-4757
-
-
Prikhodchenko, P.V.1
-
25
-
-
84855874586
-
Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries
-
Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165-4168 (2011).
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 4165-4168
-
-
Komaba, S.1
-
26
-
-
0442293602
-
In-situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2
-
Lu, Z. & Dahn, J. R. In-situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225-A1229 (2001).
-
(2001)
J. Electrochem. Soc.
, vol.148
-
-
Lu, Z.1
Dahn, J.R.2
-
27
-
-
84873914415
-
An advanced cathode for Na-ion batteries with high rate and excellent structural stability
-
Lee, D. H., Xu, J. & Meng, Y. S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15, 3304-3312 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 3304-3312
-
-
Lee, D.H.1
Xu, J.2
Meng, Y.S.3
-
28
-
-
84870357556
-
Cathode properties of Na3M2(PO4)2F3 [MTi, Fe, V] for sodium-ion batteries
-
Chihara, K., Kitajou, A., Gocheva, I. D., Okada, S. & Yamaki, J.-I. Cathode properties of Na3M2(PO4)2F3 [MTi, Fe, V] for sodium-ion batteries. J. Power Sources 227, 80-85 (2013).
-
(2013)
J. Power Sources
, vol.227
, pp. 80-85
-
-
Chihara, K.1
Kitajou, A.2
Gocheva, I.D.3
Okada, S.4
Yamaki, J.-I.5
-
29
-
-
84876738241
-
The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries
-
Saravanan, K., Mason, C. W., Rudola, A., Wong, K. H. & Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444-450 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 444-450
-
-
Saravanan, K.1
Mason, C.W.2
Rudola, A.3
Wong, K.H.4
Balaya, P.5
-
30
-
-
84883285918
-
NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries
-
Yoshida, H., Yabuuchi, N. & Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60-63 (2013).
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 60-63
-
-
Yoshida, H.1
Yabuuchi, N.2
Komaba, S.3
|