-
1
-
-
79955103117
-
Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines and future directions
-
Riemer, R., and A. Shapiro. 2011. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines and future directions. J. Neuroeng. Rehabil. 8:1–13.
-
(2011)
J. Neuroeng. Rehabil
, vol.8
, pp. 1-13
-
-
Riemer, R.1
Shapiro, A.2
-
2
-
-
27144483585
-
Optimum piezoelectric bending beam structures for energy harvesting using shoe insert
-
Mateu, M., and F. Moll. 2005. Optimum piezoelectric bending beam structures for energy harvesting using shoe insert. J. Intel. Mat. Syst. Str. 16:835–845.
-
(2005)
J. Intel. Mat. Syst. Str
, vol.16
, pp. 835-845
-
-
Mateu, M.1
Moll, F.2
-
4
-
-
65249165597
-
Converting biomechanical energy into electricity by a musclemovement- driven nanogenerator
-
Yang, R., Y. Qin, C. Li, G. Zhu, and Z. L. Wang. 2009. Converting biomechanical energy into electricity by a musclemovement- driven nanogenerator. Nano Lett. 3:1201–1206.
-
(2009)
Nano Lett
, vol.3
, pp. 1201-1206
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
6
-
-
0032901715
-
Multifunctional implantable nerve stimulator for cardiac assistance by skeletal muscle
-
Lanmuller, H., S. Sauermann, E. Unger, G. Schnetz, W. Mayr, and W. Girsch. 1999. Multifunctional implantable nerve stimulator for cardiac assistance by skeletal muscle. Artif. Organs 23:352–359.
-
(1999)
Artif. Organs
, vol.23
, pp. 352-359
-
-
Lanmuller, H.1
Sauermann, S.2
Unger, E.3
Schnetz, G.4
Mayr, W.5
Girsch, W.6
-
7
-
-
85021979497
-
-
Multilayer piezoelectric actuators. Vol. 7. Available at http://www.nec-tokin.com/(accessed 1 February 2014).
-
, vol.7
-
-
-
8
-
-
84858715965
-
Reliability of piezoelectric multilayer actuators
-
Bremen, Germany
-
Pertsch, P., S. Richter, K. D. Kramer, J. Pogodzik, and E. Hennig. 2006. Reliability of piezoelectric multilayer actuators. ACTUATOR Conference, Bremen, Germany. Available at http://www.pi-usa.us/(accessed 1 February 2014).
-
(2006)
ACTUATOR Conference
-
-
Pertsch, P.1
Richter, S.2
Kramer, K.D.3
Pogodzik, J.4
Hennig, E.5
-
9
-
-
78650312100
-
-
Ph.D. thesis, Polytechnic University of Catalonia, Barcelona, Spain
-
Saez, M. L. M. 2004. Energy harvesting from passive human power. Ph.D. thesis, Polytechnic University of Catalonia, Barcelona, Spain.
-
(2004)
Energy Harvesting from Passive Human Power
-
-
Saez, M.L.M.1
-
10
-
-
85021921846
-
-
Wasterlain, S., A. Guven, H. Gualous, J. F. Fauvarque, and R. Gallay. Hybrid power source with batteries and supercapacitor for vehicle applications. Available at http://www.garmanage.com/(accessed 1 January 2014).
-
Hybrid Power Source with Batteries and Supercapacitor for Vehicle Applications
-
-
Wasterlain, S.1
Guven, A.2
Gualous, H.3
Fauvarque, J.F.4
Gallay, R.5
-
11
-
-
51649122440
-
Energy harvesting from human and machine motion for wireless electronic devices. Proc
-
Mitcheson, P. D., E. M. Yeatman, G. K. Rao, G. A. S. Holmes, and T. C. Green. 2008. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96:1457–1486.
-
(2008)
IEEE
, vol.96
, pp. 1457-1486
-
-
Mitcheson, P.D.1
Yeatman, E.M.2
Rao, G.K.3
Holmes, G.A.S.4
Green, T.C.5
-
12
-
-
54249139101
-
Comparison of energy harvesting system for wireless sensor networks
-
Gilbert, J. M., and F. Balouchi. 2008. Comparison of energy harvesting system for wireless sensor networks. Int. J. Autom. Comput. 5:334–347.
-
(2008)
Int. J. Autom. Comput
, vol.5
, pp. 334-347
-
-
Gilbert, J.M.1
Balouchi, F.2
-
13
-
-
84864539071
-
Review of future trend of energy harvesting methods for portable medical devices
-
Paulo, J., and P. D. Gaspar. 2012. Review of future trend of energy harvesting methods for portable medical devices. Proc. World Congr. Eng. 2:1–6.
-
(2012)
Proc. World Congr. Eng
, vol.2
, pp. 1-6
-
-
Paulo, J.1
Gaspar, P.D.2
-
14
-
-
85088181761
-
Electrodynamic tethers for energy harvesting and propulsion on space plateforms
-
CA, March
-
Bilem, S. G., T. K. Mc Ternan, B. E. Gilchrist, I. C. Bell, N. R. Voronka, and R. P. Hoyt. 2011. Electrodynamic tethers for energy harvesting and propulsion on space plateforms. AIAA SPACE 2010 Conference & Exposition, CA, March 2011.
-
(2011)
AIAA SPACE 2010 Conference & Exposition
, pp. 2011
-
-
Bilem, S.G.1
Mc Ternan, T.K.2
Gilchrist, B.E.3
Bell, I.C.4
Voronka, N.R.5
Hoyt, R.P.6
-
15
-
-
85021905028
-
Applications–portable military: Batteries and fuel cells. Encycl. Electrochem
-
Cremers, C., J. Tubke, and M. Krausa. 2009. Applications–portable military: batteries and fuel cells. Encycl. Electrochem. Power Sources 1:13–21.
-
(2009)
Power Sources
, vol.1
, pp. 13-21
-
-
Cremers, C.1
Tubke, J.2
Krausa, M.3
-
16
-
-
76049127588
-
Experimental studies of using wireless energy transmission for powering embedded sensor nodes
-
Mascarenas, D. L., E. B. Flynn, M. D. Todd, T. G. Overly, K. M. Farinholt, G. Park, et al. 2010. Experimental studies of using wireless energy transmission for powering embedded sensor nodes. J. Sound Vib. 329:2421–2433.
-
(2010)
J. Sound Vib
, vol.329
, pp. 2421-2433
-
-
Mascarenas, D.L.1
Flynn, E.B.2
Todd, M.D.3
Overly, T.G.4
Farinholt, K.M.5
Park, G.6
-
17
-
-
79960874661
-
-
University of Massachusetts, Amherst, MA
-
Sharma, N., J. Gummeson, D. Irwin, and P. Shenoy. Cloudy computing: leveraging weather forecasts in energy harvesting sensor system. University of Massachusetts, Amherst, MA. Available at http://lass.cs.umass.edu/(accessed 2 February 2014).
-
Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor System
-
-
Sharma, N.1
Gummeson, J.2
Irwin, D.3
Shenoy, P.4
-
18
-
-
22844431664
-
MEMS power generator with transverse mode thin film PZT. Sens
-
Jeon, Y. B., R. Sood, J. H. Jeong, and S. G. Kim. 2006. MEMS power generator with transverse mode thin film PZT. Sens. Actuators A 122:16–22.
-
(2006)
Actuators A
, vol.122
, pp. 16-22
-
-
Jeon, Y.B.1
Sood, R.2
Jeong, J.H.3
Kim, S.G.4
-
21
-
-
84876142360
-
Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors
-
Nechibvute, A., A. Chawanda, and P. Luhanga. 2012. Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012:1–13.
-
(2012)
Smart Mater. Res
, vol.2012
, pp. 1-13
-
-
Nechibvute, A.1
Chawanda, A.2
Luhanga, P.3
-
22
-
-
84901946616
-
Pp. 5–43 in Review of energy harvesting technologies for sustainable wireless sensor network
-
National University of Singapore, Singapore
-
Tan, Y. K., and S. K. Panda. 2010. Pp. 5–43 in Review of energy harvesting technologies for sustainable wireless sensor network. Sustainable wireless sensor networks. National University of Singapore, Singapore.
-
(2010)
Sustainable Wireless Sensor Networks
-
-
Tan, Y.K.1
Panda, S.K.2
-
23
-
-
85021900649
-
Battery state-ofcharge approximation for energy harvesting embedded system
-
Buchli, B., D. Aschwanden, and J. Beutel. Battery state-ofcharge approximation for energy harvesting embedded system. Computer Engineering and Networks Laboratory, Zurich, Switzerland. Available at http://www.tik.ee (accessed 3 February 2014).
-
Computer Engineering and Networks Laboratory, Zurich, Switzerland
-
-
Buchli, B.1
Aschwanden, D.2
Beutel, J.3
-
25
-
-
77955797062
-
Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks
-
Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve. 2010. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Prog. Electromagnet. Res. 105:273–294.
-
(2010)
Prog. Electromagnet. Res
, vol.105
, pp. 273-294
-
-
Sim, Z.W.1
Shuttleworth, R.2
Alexander, M.J.3
Grieve, B.D.4
-
26
-
-
69849106860
-
Heavy metal characterization of waste portable rechargeable batteries used in mobile phones
-
Nnorom, I. C., and O. Osibanjo. 2009. Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Environ. Sci. Technol. 6:641–650.
-
(2009)
Environ. Sci. Technol
, vol.6
, pp. 641-650
-
-
Nnorom, I.C.1
Osibanjo, O.2
-
27
-
-
80053137160
-
Potential ambient energy-harvesting sources and techniques
-
Yildiz, F. 2009. Potential ambient energy-harvesting sources and techniques. J. Technol. Studies. 35:40–48.
-
(2009)
J. Technol. Studies
, vol.35
, pp. 40-48
-
-
Yildiz, F.1
-
28
-
-
0036331416
-
Human muscle power output during upper and lower-body exercises
-
Siegel, J. A., R. M. Gilders, R. S. Staron, and F. C. Hagerman. 2012. Human muscle power output during upper and lower-body exercises. J. Strength Cond. Res. 16:173–178.
-
(2012)
J. Strength Cond. Res
, vol.16
, pp. 173-178
-
-
Siegel, J.A.1
Gilders, R.M.2
Staron, R.S.3
Hagerman, F.C.4
-
29
-
-
70350761524
-
-
Mateu, L., C. Codrea, N. Lucas, M. Pollak, and P. Spies. 2006. Energy harvesting for wireless communication systems using thermogenerators. Available at http://www.iis.fraunhofer.de (accessed 5 February 2014).
-
(2006)
Energy Harvesting for Wireless Communication Systems Using Thermogenerators
-
-
Mateu, L.1
Codrea, C.2
Lucas, N.3
Pollak, M.4
Spies, P.5
-
32
-
-
84865241949
-
Thermal energy storage with phase change material. Leonardo El
-
Soca Ciu, L. G. 2012. Thermal energy storage with phase change material. Leonardo El. J. Pract. Technol. 20:75–98.
-
(2012)
J. Pract. Technol
, vol.20
, pp. 75-98
-
-
Soca Ciu, L.G.1
-
33
-
-
57649200354
-
Review on thermal energy storage with phase change materials and applications
-
Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13:318–345.
-
(2009)
Renew. Sustain. Energy Rev
, vol.13
, pp. 318-345
-
-
Sharma, A.1
Tyagi, V.V.2
Chen, C.R.3
Buddhi, D.4
-
34
-
-
84941234273
-
The heating effect of phase change material (PCM) vests on a thermal manikin in a subzero environment
-
University of Coimbra, Coimbra, Portugal
-
Gao, C., K. Kuklane, and I. Holmér. 2008. The heating effect of phase change material (PCM) vests on a thermal manikin in a subzero environment. Seventh International Thermal Manikin and Modelling Meeting, University of Coimbra, Coimbra, Portugal. Available at http://www.adai.pt/(accessed 6 February 2014).
-
(2008)
Seventh International Thermal Manikin and Modelling Meeting
-
-
Gao, C.1
Kuklane, K.2
Holmér, I.3
-
35
-
-
84863238012
-
Phase change material as a thermal energy storage material for cooling of building
-
Ravikumar, M., and P. S. S. Srinivasan. 2008. Phase change material as a thermal energy storage material for cooling of building. J. Theor. Appl. Inf. Technol. 4:503–511.
-
(2008)
J. Theor. Appl. Inf. Technol
, vol.4
, pp. 503-511
-
-
Ravikumar, M.1
Srinivasan, P.S.S.2
-
36
-
-
0037289573
-
Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications
-
Zalba, B., M. J. Marin, L. F. Cabeza, and H. Mehling. 2002. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Thermal Energy 23:251–283.
-
(2002)
Appl. Thermal Energy
, vol.23
, pp. 251-283
-
-
Zalba, B.1
Marin, M.J.2
Cabeza, L.F.3
Mehling, H.4
-
37
-
-
63249113429
-
Enhancing the thermal properties of textiles with phase change materials
-
Erkan, G. 2004. Enhancing the thermal properties of textiles with phase change materials. Res. J. Text. Apparel 8:57–64.
-
(2004)
Res. J. Text. Apparel
, vol.8
, pp. 57-64
-
-
Erkan, G.1
-
38
-
-
42949133332
-
Optimizing the performance of phase-change materials in personal protective clothing systems
-
Reinertsen, E. R., H. Fǽrevik, K. Holbǿ, R. Nesbakken, J. Reitan, A. Rǿyset, et al. 2008. Optimizing the performance of phase-change materials in personal protective clothing systems. Int. J. Occup. Saf. Ergon. 14:43–53.
-
(2008)
Int. J. Occup. Saf. Ergon
, vol.14
, pp. 43-53
-
-
Reinertsen, E.R.1
Fǽrevik, H.2
Ǽrevikholb, K.3
Ǿnesbakken, R.4
Reitan, J.5
Rǿyset, A.6
-
39
-
-
77957665575
-
Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis
-
Agbossou, A., Q. Zhanq, G. Sebald, and D. Guyomar. 2010. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis. Sens. Actuators A 163:284–290.
-
(2010)
Sens. Actuators A
, vol.163
, pp. 284-290
-
-
Agbossou, A.1
Zhanq, Q.2
Sebald, G.3
Guyomar, D.4
-
43
-
-
77950595789
-
Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators
-
Xie, J., C. Lee, and H. Feng. 2010. Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J. Microelectromech. Syst. 19:317–324.
-
(2010)
J. Microelectromech. Syst
, vol.19
, pp. 317-324
-
-
Xie, J.1
Lee, C.2
Feng, H.3
-
44
-
-
84875179472
-
Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process
-
Yang, M. Z., C. C. Wu, C. L. Dai, and W. J. Tsai. 2013. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process. Sensors 13:2359–2367.
-
(2013)
Sensors
, vol.13
, pp. 2359-2367
-
-
Yang, M.Z.1
Wu, C.C.2
Dai, C.L.3
Tsai, W.J.4
-
45
-
-
84857998698
-
Human powered MEMS-based energy harvest devices
-
Sue, C. H., and N. C. Tsai. 2011. Human powered MEMS-based energy harvest devices. Appl. Energy 93:390–403.
-
(2011)
Appl. Energy
, vol.93
, pp. 390-403
-
-
Sue, C.H.1
Tsai, N.C.2
-
46
-
-
79955045600
-
Energy harvesting for self-powered wearable devices
-
A. Bonfiglio and D. De Rossi, eds., Springer, New York, NY
-
Leonov, V. 2011. Energy harvesting for self-powered wearable devices. Pp. 27–49 in A. Bonfiglio and D. De Rossi, eds. Wearable monitoring systems. Springer, New York, NY. doi: 10.1007/978-1-4419-7384-9
-
(2011)
Wearable Monitoring Systems
, pp. 27-49
-
-
Leonov, V.1
-
47
-
-
84877271121
-
Thermoelectric energy harvesting of human body heat for wearable sensors
-
Leonov, V. 2013. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13:2284–2291.
-
(2013)
IEEE Sens. J
, vol.13
, pp. 2284-2291
-
-
Leonov, V.1
-
48
-
-
52949100212
-
An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices
-
Bradley, P. D. 2006. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. Biomed. Circ. Syst. Conf. 2006:158–161. doi: 10.1109/BIOCAS.2006.4600332
-
(2006)
Biomed. Circ. Syst. Conf
, vol.2006
, pp. 158-161
-
-
Bradley, P.D.1
-
50
-
-
84855451681
-
Power generation from waste heat in a food processing application
-
Aneke, M., B. Agnew, C. Underwood, H. Wu, and H. Masheiti. 2012. Power generation from waste heat in a food processing application. Appl. Therm. Eng. 36:171–180.
-
(2012)
Appl. Therm. Eng
, vol.36
, pp. 171-180
-
-
Aneke, M.1
Agnew, B.2
Underwood, C.3
Wu, H.4
Masheiti, H.5
-
51
-
-
84928327653
-
Co-generation of power through waste heat recovery–a cement plant case study
-
Khattak, Z., J. A. Khan, S. Ahmad, and S. Masaud. 2012. Co-generation of power through waste heat recovery–a cement plant case study. Int. Conf. Future Electr. Power Energy Syst. 9:418–424.
-
(2012)
Int. Conf. Future Electr. Power Energy Syst
, vol.9
, pp. 418-424
-
-
Khattak, Z.1
Khan, J.A.2
Ahmad, S.3
Masaud, S.4
-
52
-
-
85021948154
-
-
Waste heat recovery: technology and opportunities in U.S. industry, 2008. The Energy Gov website. Available at http://www1.eere.energy.gov (accessed 7 February 2014).
-
(2008)
The Energy Gov Website
-
-
-
54
-
-
78650565949
-
Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators
-
Hsu, C. T., G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao. 2011. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Appl. Energy 88:1291–1297.
-
(2011)
Appl. Energy
, vol.88
, pp. 1291-1297
-
-
Hsu, C.T.1
Huang, G.Y.2
Chu, H.S.3
Yu, B.4
Yao, D.J.5
-
55
-
-
85022048651
-
-
Harvesting heat and vibration energy to power wired communication in vehicle safety system, 2013. Available at http://www.digikey.com (accessed 14 May 2014).
-
(2013)
-
-
-
56
-
-
84869119524
-
Waste thermal energy harvesting from a convection-driven Rijke-Zhao thermo-acoustic-piezo system
-
Zhao, D. 2013. Waste thermal energy harvesting from a convection-driven Rijke-Zhao thermo-acoustic-piezo system. Energy Convers. Manage. 66:87–97.
-
(2013)
Energy Convers. Manage
, vol.66
, pp. 87-97
-
-
Zhao, D.1
-
57
-
-
85021933688
-
-
Group of Dielectric Physics website
-
Pyroelectricity. Group of Dielectric Physics website. Available at http://www.gdp.if(accessed 14 June 2014).
-
-
-
-
58
-
-
84870525177
-
Pyroelectric energy harvesting using liquid-based switchable thermal Interfaces. Sens
-
Cha, G., and S. Ju. 2013. Pyroelectric energy harvesting using liquid-based switchable thermal Interfaces. Sens. Actuators A 189:100–107.
-
(2013)
Actuators A
, vol.189
, pp. 100-107
-
-
Cha, G.1
Ju, S.2
-
59
-
-
84870858623
-
Pyroelectric nanogenerators for driving wireless sensors
-
Available at
-
Yang, Y., S. Wang, Y. Zhang, and Z. L. Wang. 2012. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett. 12:6408–6413. Available at http://dx.doi.org/10.1021/nl303755m
-
(2012)
Nano Lett
, vol.12
, pp. 6408-6413
-
-
Yang, Y.1
Wang, S.2
Zhang, Y.3
Wang, Z.L.4
-
60
-
-
79957701145
-
Solar micro-energy harvesting with pyroelectric effect and wind flow. Sens
-
Zhang, Q., A. Agbossou, Z. Feng, and M. Cosnier. 2011. Solar micro-energy harvesting with pyroelectric effect and wind flow. Sens. Actuators A 168:335–342.
-
(2011)
Actuators A
, vol.168
, pp. 335-342
-
-
Zhang, Q.1
Agbossou, A.2
Feng, Z.3
Cosnier, M.4
-
61
-
-
79959817858
-
Review and future trend of energy harvesting methods for portable medical devices
-
London, U.K
-
Paulo, J., and P. D. Gaspar. 2010. Review and future trend of energy harvesting methods for portable medical devices. Proceedings of the World Congress on Engineering, London, U.K.
-
(2010)
Proceedings of the World Congress on Engineering
-
-
Paulo, J.1
Gaspar, P.D.2
-
62
-
-
79960553064
-
Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations
-
Available at
-
Dow, A. B. A., H. A. Al-Rubaye, D. Koo, M. Schneider, A. Bittner, U. Schmid, et al. 2011. Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations. Smart Sensors, Actuators and MEMS vol. 8066, 7 pages. Available at http://dx.doi.org/10.1117/12.885861
-
(2011)
Smart Sensors, Actuators and MEMS
, vol.8066
-
-
Dow, A.B.A.1
Al-Rubaye, H.A.2
Koo, D.3
Schneider, M.4
Bittner, A.5
Schmid, U.6
-
63
-
-
58149343283
-
Micromachined energy harvester form a keyboard using combined electromagnetic and piezoelectric conversion
-
Wacharasindhu, T., and J. W. Kwon. 2008. Micromachined energy harvester form a keyboard using combined electromagnetic and piezoelectric conversion. J. Micromech. Microeng. 18:104016.
-
(2008)
J. Micromech. Microeng
, vol.18
-
-
Wacharasindhu, T.1
Kwon, J.W.2
-
64
-
-
84878853658
-
Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator
-
Li, B., A. J. Laviage, J. H. You, and Y. J. Kim. 2013. Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator. Appl. Acoust. 74:1271–1278.
-
(2013)
Appl. Acoust
, vol.74
, pp. 1271-1278
-
-
Li, B.1
Laviage, A.J.2
You, J.H.3
Kim, Y.J.4
-
65
-
-
84885177725
-
Widebandwidth piezoelectric energy harvester integrated with parylene-C beam structures
-
Huang, P. C., T. H. Tsai, and Y. J. Yang. 2013. Widebandwidth piezoelectric energy harvester integrated with parylene-C beam structures. Microelectron. Eng. 111:214–219.
-
(2013)
Microelectron. Eng
, vol.111
, pp. 214-219
-
-
Huang, P.C.1
Tsai, T.H.2
Yang, Y.J.3
-
66
-
-
84885180223
-
Wind energy harvesting based on flow-induced-vibration and impact
-
He, X. F., and J. Gao. 2013. Wind energy harvesting based on flow-induced-vibration and impact. Microelectron. Eng. 111:82–86.
-
(2013)
Microelectron. Eng
, vol.111
, pp. 82-86
-
-
He, X.F.1
Gao, J.2
-
68
-
-
80655128525
-
Cryogenic electromechanical behaviour of multilayer piezoactuators for fuel injector applications
-
Shindo, Y., F. Narita, and T. Sasakura. 2011. Cryogenic electromechanical behaviour of multilayer piezoactuators for fuel injector applications. J. Appl. Phys. 110:084510–084510-7.
-
(2011)
J. Appl. Phys
, vol.110
-
-
Shindo, Y.1
Narita, F.2
Sasakura, T.3
-
69
-
-
79551485262
-
Piezo-actuators modelling for smart applications
-
Boukari, A. F., J. C. Carmona, G. Moraru, F. Malburet, A. Chaaba, and M. Douimi. 2011. Piezo-actuators modelling for smart applications. Mechatronics 21:339–349.
-
(2011)
Mechatronics
, vol.21
, pp. 339-349
-
-
Boukari, A.F.1
Carmona, J.C.2
Moraru, G.3
Malburet, F.4
Chaaba, A.5
Douimi, M.6
-
70
-
-
41249087117
-
MEMS-based micropumps in drug delivery and biomedical applications
-
Nisar, A., N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont. 2008. MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators B 130:917–942.
-
(2008)
Sens. Actuators B
, vol.130
, pp. 917-942
-
-
Nisar, A.1
Afzulpurkar, N.2
Mahaisavariya, B.3
Tuantranont, A.4
-
71
-
-
69549118614
-
Sensitivity and fidelity of a novel piezoelectric middle ear transducer
-
Chi, F. L., Y. Wu, Q. B. Yan, Y. H. Shen, Y. Jiang, and Y. H. Fan. 2009. Sensitivity and fidelity of a novel piezoelectric middle ear transducer. J. Otorhinolaryngol. 71:216–220.
-
(2009)
J. Otorhinolaryngol
, vol.71
, pp. 216-220
-
-
Chi, F.L.1
Wu, Y.2
Yan, Q.B.3
Shen, Y.H.4
Jiang, Y.5
Fan, Y.H.6
-
75
-
-
0032046407
-
Thinlayer composite unimorph ferroelectric driver and sensor properties
-
Mossi, K. M., G. V. Selby, and R. G. Bryant. 1998. Thinlayer composite unimorph ferroelectric driver and sensor properties. Mater. Lett. 35:39–49.
-
(1998)
Mater. Lett
, vol.35
, pp. 39-49
-
-
Mossi, K.M.1
Selby, G.V.2
Bryant, R.G.3
-
76
-
-
84904748998
-
Magnetohydrodynamics
-
Dorch, S. B. F. 2007. Magnetohydrodynamics. Scholarpedia 2:2295.
-
(2007)
Scholarpedia
, pp. 2295
-
-
Dorch, S.B.F.1
-
77
-
-
84863193358
-
Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics
-
Dai, D., J. Liu, and Y. Zhou. 2012. Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics. Front. Energy 6:112–121.
-
(2012)
Front. Energy
, vol.6
, pp. 112-121
-
-
Dai, D.1
Liu, J.2
Zhou, Y.3
-
78
-
-
11144222986
-
-
Desco Industries Inc
-
Allen, R. C. 2000. Triboelectric generation: getting charged. Desco Industries Inc. Available at http://www.esdjournal.com/techpapr/ryne/ryntribo.doc (accessed 18 June 2014).
-
(2000)
Triboelectric Generation: Getting Charged
-
-
Allen, R.C.1
-
79
-
-
84885390532
-
Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
-
Available at
-
Hou, T. C., Y. Yang, H. Zhang, J. Chen, and Z. L. Wang. 2013. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856–862. Available at http://dx.doi.org/10.1016/j.nanoen.2013.03.001
-
(2013)
Nano Energy
, vol.2
, pp. 856-862
-
-
Hou, T.C.1
Yang, Y.2
Zhang, H.3
Chen, J.4
Wang, Z.L.5
-
80
-
-
84858142463
-
Flexible triboelectric generator
-
Fan, F. R., Z. Q. Tian, and Z. L. Wang. 2012. Flexible triboelectric generator. Nano Energy 1:328–334. doi: 10.1016/j.nanoen.2012.01.004
-
(2012)
Nano Energy
, vol.1
, pp. 328-334
-
-
Fan, F.R.1
Tian, Z.Q.2
Wang, Z.L.3
-
81
-
-
77955417284
-
Thermoacoustic effect of travelling-standing wave
-
Kang, H., G. Zhou, and Q. Li. 2010. Thermoacoustic effect of travelling-standing wave. Cryogenics 50:450–458.
-
(2010)
Cryogenics
, vol.50
, pp. 450-458
-
-
Kang, H.1
Zhou, G.2
Li, Q.3
-
82
-
-
0003771749
-
-
Swift, G. 2004. Thermoacoustics. Available at http://www.lanl.gov (accessed 18 June 2014).
-
(2004)
Thermoacoustics
-
-
Swift, G.1
-
84
-
-
33847249957
-
Experimental observation on a scale thermoacoustic prime mover
-
Tao, J., Z. Bao-sen, T. Ke, B. Rui, and C. Guo-bang. 2007. Experimental observation on a scale thermoacoustic prime mover. J. Zhejiang Univ. Sci. A 8:205–209.
-
(2007)
J. Zhejiang Univ. Sci. A
, vol.8
, pp. 205-209
-
-
Tao, J.1
Bao-Sen, Z.2
Ke, T.3
Rui, B.4
Guo-Bang, C.5
-
85
-
-
84862141069
-
Energy harvesting from a standing wave thermo-acousticpiezoelectric resonator
-
Smoker, J., M. Nouh, O. Aldraihem, and A. Baz. 2012. Energy harvesting from a standing wave thermo-acousticpiezoelectric resonator. J. Appl. Phys. 111:104901.
-
(2012)
J. Appl. Phys
, vol.111
-
-
Smoker, J.1
Nouh, M.2
Aldraihem, O.3
Baz, A.4
-
88
-
-
85021905172
-
-
Dresselhaus, M. S., M. Y. Lin, O. Rabin, M. R. Black, and G. Dresselhaus. Nanowires. Available at http://mgm.mit.edu/(accessed 16 December 2013).
-
Nanowires
-
-
Dresselhaus, M.S.1
Lin, M.Y.2
Rabin, O.3
Black, M.R.4
Dresselhaus, G.5
-
90
-
-
85021991715
-
-
Science Daily website
-
Nanowire. Science Daily website. Available at http://www.sciencedaily.com/(accessed 16 December 2013).
-
-
-
-
92
-
-
67349186180
-
Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens
-
Falconi, C., G. Mantini, A. D’Amico, and Z. L. Wang. 2009. Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens. Actuators B 139:511–519.
-
(2009)
Actuators B
, vol.139
, pp. 511-519
-
-
Falconi, C.1
Mantini, G.2
D’Amico, A.3
Wang, Z.L.4
-
96
-
-
35548954296
-
Energy harvesting by magnetostricitve material (MsM) for powering wireless sensors in SHM
-
Wang, L., and F. G. Yuan. 2007. Energy harvesting by magnetostricitve material (MsM) for powering wireless sensors in SHM. SPIE Smart Structures and Materials & NDE Health Monitoring. Available at http://www.mae.ncsu.edu/(accessed 11 January 2014).
-
(2007)
SPIE Smart Structures and Materials & NDE Health Monitoring
-
-
Wang, L.1
Yuan, F.G.2
-
97
-
-
0036577936
-
Magnetostrictive properties of galfenol alloys under compressive stress
-
Clark, A. E., M. W. Fogle, J. B. Restorff, and T. A. Lograsso. 2002. Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43:881–886.
-
(2002)
Mater. Trans
, vol.43
, pp. 881-886
-
-
Clark, A.E.1
Fogle, M.W.2
Restorff, J.B.3
Lograsso, T.A.4
-
99
-
-
80053531596
-
Performance of energy harvester using iron-gallium alloy in free vibration
-
Ueno, T., and S. Yamada. 2011. Performance of energy harvester using iron-gallium alloy in free vibration. IEEE Trans. Magn. 47:2407–2409.
-
(2011)
IEEE Trans. Magn
, vol.47
, pp. 2407-2409
-
-
Ueno, T.1
Yamada, S.2
-
101
-
-
84891765569
-
An electroactive polymer energy harvester for wireless sensor networks
-
Mckay, T. G., S. Rosset, I. A. Anderson, and H. Shea. 2013. An electroactive polymer energy harvester for wireless sensor networks. J. Phys. 479:1–5. doi: 10.1088/1742-6596/476/1/012117
-
(2013)
J. Phys
, vol.479
, pp. 1-5
-
-
McKay, T.G.1
Rosset, S.2
Anderson, I.A.3
Shea, H.4
-
102
-
-
4544347723
-
Techniques for minimizing power consumption in low data-rate wireless sensor networks
-
Atlanta, GA
-
Rhee, S., D. Seetharam, and S. Liu. 2004. Techniques for minimizing power consumption in low data-rate wireless sensor networks. Wireless Communications and Networking Conference, Vol 3, Atlanta, GA.
-
(2004)
Wireless Communications and Networking Conference
, vol.3
-
-
Rhee, S.1
Seetharam, D.2
Liu, S.3
-
103
-
-
77953129818
-
Electromagnetic energy harvesting from flow induced vibration
-
Wang, D. A., and K. H. Chang. 2010. Electromagnetic energy harvesting from flow induced vibration. Microelectron. J. 41:356–364.
-
(2010)
Microelectron. J
, vol.41
, pp. 356-364
-
-
Wang, D.A.1
Chang, K.H.2
-
104
-
-
84876215940
-
Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies
-
Ashraf, K., M. H. M. Khir, J. O. Dennis, and Z. Baharudin. 2013. Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies. Sens. Actuators A 195:123–132.
-
(2013)
Sens. Actuators A
, vol.195
, pp. 123-132
-
-
Ashraf, K.1
Khir, M.H.M.2
Dennis, J.O.3
Baharudin, Z.4
-
105
-
-
84949176971
-
Broadband vibration energy harvesting
-
N. Elvin and A. Erturk, eds., Springer, Singapore
-
Tang, L., Y. Yang, and C. K. Soh. 2013. Broadband vibration energy harvesting. Pp. 17–61 in N. Elvin and A. Erturk, eds. Advances in energy harvesting methods. Springer, Singapore.
-
(2013)
Advances in Energy Harvesting Methods
, pp. 17-61
-
-
Tang, L.1
Yang, Y.2
Soh, C.K.3
-
106
-
-
84881130856
-
Vibration energy harvesting: Machinery vibration, human movement and flow induced vibration
-
Y. K. Tan, ed., InTech, Japan
-
Zhu, D. 2011. Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. Pp. 25–54 in Y. K. Tan, ed. Sustainable energy harvesting technologies–past, present, & future. InTech, Japan.
-
(2011)
Sustainable Energy Harvesting technologies–past, Present, & Future
, pp. 25-54
-
-
Zhu, D.1
-
107
-
-
84883288880
-
A self-tuning resonator for vibration energy harvesting
-
Aboulfotoh, N. A., M. H. Arafa, and S. M. Megahed. 2013. A self-tuning resonator for vibration energy harvesting. Sens. Actuators A 20:328–334.
-
(2013)
Sens. Actuators A
, vol.20
, pp. 328-334
-
-
Aboulfotoh, N.A.1
Arafa, M.H.2
Megahed, S.M.3
-
108
-
-
84893641359
-
Design issues in radio frequency energy harvesting system
-
Y. K. Tan, ed., InTech, Japan
-
Mikeka, C., and H. Arai. 2011. Design issues in radio frequency energy harvesting system. Pp. 235–256 in Y. K. Tan, ed. Sustainable energy harvesting technologies–past, present & future. InTech, Japan.
-
(2011)
Sustainable Energy Harvesting technologies–past, Present & Future
, pp. 235-256
-
-
Mikeka, C.1
Arai, H.2
-
109
-
-
84877758297
-
A tuned rectifier for RF energy harvesting from ambient radiations
-
Singh, G., R. Ponnaganti, T. V. Prabhakar, and K. J. Vinoy. 2013. A tuned rectifier for RF energy harvesting from ambient radiations. AEU–Int. J. Electron. Commun. 67:1–6.
-
(2013)
AEU–Int. J. Electron. Commun
, vol.67
, pp. 1-6
-
-
Singh, G.1
Ponnaganti, R.2
Prabhakar, T.V.3
Vinoy, K.J.4
-
110
-
-
70350674119
-
A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching
-
Challa, V. R., M. G. Prasad, and F. T. Fisher. 2009. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18:1–11.
-
(2009)
Smart Mater. Struct
, vol.18
, pp. 1-11
-
-
Challa, V.R.1
Prasad, M.G.2
Fisher, F.T.3
-
111
-
-
41849138249
-
A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater
-
Challa, V. R., M. G. Prasad, Y. Shi, and F. T. Fisher. 2008. A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17:1–10.
-
(2008)
Struct
, vol.17
, pp. 1-10
-
-
Challa, V.R.1
Prasad, M.G.2
Shi, Y.3
Fisher, F.T.4
-
113
-
-
84863229502
-
Hybrid cells for simultaneously harvesting multi-type energies for selfpowered micro/nanosystem
-
Xu, C., C. Pan, Y. Liu, and Z. L. Yang. 2012. Hybrid cells for simultaneously harvesting multi-type energies for selfpowered micro/nanosystem. Nano Energy 1:259–272.
-
(2012)
Nano Energy
, vol.1
, pp. 259-272
-
-
Xu, C.1
Pan, C.2
Liu, Y.3
Yang, Z.L.4
-
114
-
-
84880856847
-
Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets
-
Belhora, F., P. J. Cottinet, A. Hajjaji, D. Guyomar, M. Mazroui, L. Lebrun, et al. 2013. Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets. Sens. Actuators A 201:58–65.
-
(2013)
Sens. Actuators A
, vol.201
, pp. 58-65
-
-
Belhora, F.1
Cottinet, P.J.2
Hajjaji, A.3
Guyomar, D.4
Mazroui, M.5
Lebrun, L.6
-
115
-
-
84901812801
-
-
M.Engg thesis, Georgia Institute of Technology, Atlanta, GA
-
Hobbs, W., Jr. 2010. Piezoelectric energy harvesting vortex induced vibrations in plants, soap films, and arrays of cylinders. M.Engg thesis, Georgia Institute of Technology, Atlanta, GA.
-
(2010)
Piezoelectric Energy Harvesting Vortex Induced Vibrations in Plants, Soap Films, and Arrays of Cylinders
-
-
Hobbs, W.1
-
118
-
-
70449911809
-
On thermoelectric and pyroelectric energy harvesting
-
Sebald, G., D. Guyomar, and A. Agbossou. 2009. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18:1–7.
-
(2009)
Smart Mater. Struct
, vol.18
, pp. 1-7
-
-
Sebald, G.1
Guyomar, D.2
Agbossou, A.3
-
120
-
-
84896920017
-
Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and selfpowered active acoustic sensing
-
Yang, J., J. Chen, Y. Liu, W. Yang, Y. Su, and Z. L. Wang. 2014. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and selfpowered active acoustic sensing. ACS Nano 8:2649–2657.
-
(2014)
ACS Nano
, vol.8
, pp. 2649-2657
-
-
Yang, J.1
Chen, J.2
Liu, Y.3
Yang, W.4
Su, Y.5
Wang, Z.L.6
-
121
-
-
84877758297
-
A tuned rectifier for RF energy harvesting from ambient radiations
-
Singh, G., R. Ponnaganti, T. V. Prabhakar, and K. J. Vinoy. 2013. A tuned rectifier for RF energy harvesting from ambient radiations. AEU–Int. J. Electron. Commun. 67:564–569.
-
(2013)
AEU–Int. J. Electron. Commun
, vol.67
, pp. 564-569
-
-
Singh, G.1
Ponnaganti, R.2
Prabhakar, T.V.3
Vinoy, K.J.4
-
122
-
-
85021898747
-
-
The PhysOrg website
-
Tiny turbine in human artery harvests energy from blood flow. The PhysOrg website. Available at http://phys.org (accessed 4 February 2014).
-
-
-
|