메뉴 건너뛰기




Volumn 3, Issue 3, 2015, Pages 153-173

Energy harvesting for assistive and mobile applications

Author keywords

Ambient energy; Electrets; Magnetostrictive materials; Methodologies; Piezo (piezoelectric); Renewable energy; Thermodynamics; Thermoelectric; Transducers; Wireless sensor

Indexed keywords

COMPLEX NETWORKS; ELECTRETS; ELECTRIC BATTERIES; ELECTRIC POWER SUPPLIES TO APPARATUS; ENERGY HARVESTING; MAGNETOSTRICTIVE DEVICES; SECONDARY BATTERIES; THERMODYNAMICS; TRANSDUCERS; WEARABLE SENSORS; WIRELESS SENSOR NETWORKS;

EID: 85011425702     PISSN: None     EISSN: 20500505     Source Type: Journal    
DOI: 10.1002/ese3.63     Document Type: Review
Times cited : (91)

References (124)
  • 1
    • 79955103117 scopus 로고    scopus 로고
    • Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines and future directions
    • Riemer, R., and A. Shapiro. 2011. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines and future directions. J. Neuroeng. Rehabil. 8:1–13.
    • (2011) J. Neuroeng. Rehabil , vol.8 , pp. 1-13
    • Riemer, R.1    Shapiro, A.2
  • 2
    • 27144483585 scopus 로고    scopus 로고
    • Optimum piezoelectric bending beam structures for energy harvesting using shoe insert
    • Mateu, M., and F. Moll. 2005. Optimum piezoelectric bending beam structures for energy harvesting using shoe insert. J. Intel. Mat. Syst. Str. 16:835–845.
    • (2005) J. Intel. Mat. Syst. Str , vol.16 , pp. 835-845
    • Mateu, M.1    Moll, F.2
  • 4
    • 65249165597 scopus 로고    scopus 로고
    • Converting biomechanical energy into electricity by a musclemovement- driven nanogenerator
    • Yang, R., Y. Qin, C. Li, G. Zhu, and Z. L. Wang. 2009. Converting biomechanical energy into electricity by a musclemovement- driven nanogenerator. Nano Lett. 3:1201–1206.
    • (2009) Nano Lett , vol.3 , pp. 1201-1206
    • Yang, R.1    Qin, Y.2    Li, C.3    Zhu, G.4    Wang, Z.L.5
  • 6
    • 0032901715 scopus 로고    scopus 로고
    • Multifunctional implantable nerve stimulator for cardiac assistance by skeletal muscle
    • Lanmuller, H., S. Sauermann, E. Unger, G. Schnetz, W. Mayr, and W. Girsch. 1999. Multifunctional implantable nerve stimulator for cardiac assistance by skeletal muscle. Artif. Organs 23:352–359.
    • (1999) Artif. Organs , vol.23 , pp. 352-359
    • Lanmuller, H.1    Sauermann, S.2    Unger, E.3    Schnetz, G.4    Mayr, W.5    Girsch, W.6
  • 7
    • 85021979497 scopus 로고    scopus 로고
    • Multilayer piezoelectric actuators. Vol. 7. Available at http://www.nec-tokin.com/(accessed 1 February 2014).
    • , vol.7
  • 8
    • 84858715965 scopus 로고    scopus 로고
    • Reliability of piezoelectric multilayer actuators
    • Bremen, Germany
    • Pertsch, P., S. Richter, K. D. Kramer, J. Pogodzik, and E. Hennig. 2006. Reliability of piezoelectric multilayer actuators. ACTUATOR Conference, Bremen, Germany. Available at http://www.pi-usa.us/(accessed 1 February 2014).
    • (2006) ACTUATOR Conference
    • Pertsch, P.1    Richter, S.2    Kramer, K.D.3    Pogodzik, J.4    Hennig, E.5
  • 9
    • 78650312100 scopus 로고    scopus 로고
    • Ph.D. thesis, Polytechnic University of Catalonia, Barcelona, Spain
    • Saez, M. L. M. 2004. Energy harvesting from passive human power. Ph.D. thesis, Polytechnic University of Catalonia, Barcelona, Spain.
    • (2004) Energy Harvesting from Passive Human Power
    • Saez, M.L.M.1
  • 11
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices. Proc
    • Mitcheson, P. D., E. M. Yeatman, G. K. Rao, G. A. S. Holmes, and T. C. Green. 2008. Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96:1457–1486.
    • (2008) IEEE , vol.96 , pp. 1457-1486
    • Mitcheson, P.D.1    Yeatman, E.M.2    Rao, G.K.3    Holmes, G.A.S.4    Green, T.C.5
  • 12
    • 54249139101 scopus 로고    scopus 로고
    • Comparison of energy harvesting system for wireless sensor networks
    • Gilbert, J. M., and F. Balouchi. 2008. Comparison of energy harvesting system for wireless sensor networks. Int. J. Autom. Comput. 5:334–347.
    • (2008) Int. J. Autom. Comput , vol.5 , pp. 334-347
    • Gilbert, J.M.1    Balouchi, F.2
  • 13
    • 84864539071 scopus 로고    scopus 로고
    • Review of future trend of energy harvesting methods for portable medical devices
    • Paulo, J., and P. D. Gaspar. 2012. Review of future trend of energy harvesting methods for portable medical devices. Proc. World Congr. Eng. 2:1–6.
    • (2012) Proc. World Congr. Eng , vol.2 , pp. 1-6
    • Paulo, J.1    Gaspar, P.D.2
  • 15
    • 85021905028 scopus 로고    scopus 로고
    • Applications–portable military: Batteries and fuel cells. Encycl. Electrochem
    • Cremers, C., J. Tubke, and M. Krausa. 2009. Applications–portable military: batteries and fuel cells. Encycl. Electrochem. Power Sources 1:13–21.
    • (2009) Power Sources , vol.1 , pp. 13-21
    • Cremers, C.1    Tubke, J.2    Krausa, M.3
  • 16
    • 76049127588 scopus 로고    scopus 로고
    • Experimental studies of using wireless energy transmission for powering embedded sensor nodes
    • Mascarenas, D. L., E. B. Flynn, M. D. Todd, T. G. Overly, K. M. Farinholt, G. Park, et al. 2010. Experimental studies of using wireless energy transmission for powering embedded sensor nodes. J. Sound Vib. 329:2421–2433.
    • (2010) J. Sound Vib , vol.329 , pp. 2421-2433
    • Mascarenas, D.L.1    Flynn, E.B.2    Todd, M.D.3    Overly, T.G.4    Farinholt, K.M.5    Park, G.6
  • 18
    • 22844431664 scopus 로고    scopus 로고
    • MEMS power generator with transverse mode thin film PZT. Sens
    • Jeon, Y. B., R. Sood, J. H. Jeong, and S. G. Kim. 2006. MEMS power generator with transverse mode thin film PZT. Sens. Actuators A 122:16–22.
    • (2006) Actuators A , vol.122 , pp. 16-22
    • Jeon, Y.B.1    Sood, R.2    Jeong, J.H.3    Kim, S.G.4
  • 21
    • 84876142360 scopus 로고    scopus 로고
    • Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors
    • Nechibvute, A., A. Chawanda, and P. Luhanga. 2012. Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012:1–13.
    • (2012) Smart Mater. Res , vol.2012 , pp. 1-13
    • Nechibvute, A.1    Chawanda, A.2    Luhanga, P.3
  • 22
    • 84901946616 scopus 로고    scopus 로고
    • Pp. 5–43 in Review of energy harvesting technologies for sustainable wireless sensor network
    • National University of Singapore, Singapore
    • Tan, Y. K., and S. K. Panda. 2010. Pp. 5–43 in Review of energy harvesting technologies for sustainable wireless sensor network. Sustainable wireless sensor networks. National University of Singapore, Singapore.
    • (2010) Sustainable Wireless Sensor Networks
    • Tan, Y.K.1    Panda, S.K.2
  • 25
    • 77955797062 scopus 로고    scopus 로고
    • Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks
    • Sim, Z. W., R. Shuttleworth, M. J. Alexander, and B. D. Grieve. 2010. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks. Prog. Electromagnet. Res. 105:273–294.
    • (2010) Prog. Electromagnet. Res , vol.105 , pp. 273-294
    • Sim, Z.W.1    Shuttleworth, R.2    Alexander, M.J.3    Grieve, B.D.4
  • 26
    • 69849106860 scopus 로고    scopus 로고
    • Heavy metal characterization of waste portable rechargeable batteries used in mobile phones
    • Nnorom, I. C., and O. Osibanjo. 2009. Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Environ. Sci. Technol. 6:641–650.
    • (2009) Environ. Sci. Technol , vol.6 , pp. 641-650
    • Nnorom, I.C.1    Osibanjo, O.2
  • 27
    • 80053137160 scopus 로고    scopus 로고
    • Potential ambient energy-harvesting sources and techniques
    • Yildiz, F. 2009. Potential ambient energy-harvesting sources and techniques. J. Technol. Studies. 35:40–48.
    • (2009) J. Technol. Studies , vol.35 , pp. 40-48
    • Yildiz, F.1
  • 32
    • 84865241949 scopus 로고    scopus 로고
    • Thermal energy storage with phase change material. Leonardo El
    • Soca Ciu, L. G. 2012. Thermal energy storage with phase change material. Leonardo El. J. Pract. Technol. 20:75–98.
    • (2012) J. Pract. Technol , vol.20 , pp. 75-98
    • Soca Ciu, L.G.1
  • 33
    • 57649200354 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change materials and applications
    • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13:318–345.
    • (2009) Renew. Sustain. Energy Rev , vol.13 , pp. 318-345
    • Sharma, A.1    Tyagi, V.V.2    Chen, C.R.3    Buddhi, D.4
  • 34
    • 84941234273 scopus 로고    scopus 로고
    • The heating effect of phase change material (PCM) vests on a thermal manikin in a subzero environment
    • University of Coimbra, Coimbra, Portugal
    • Gao, C., K. Kuklane, and I. Holmér. 2008. The heating effect of phase change material (PCM) vests on a thermal manikin in a subzero environment. Seventh International Thermal Manikin and Modelling Meeting, University of Coimbra, Coimbra, Portugal. Available at http://www.adai.pt/(accessed 6 February 2014).
    • (2008) Seventh International Thermal Manikin and Modelling Meeting
    • Gao, C.1    Kuklane, K.2    Holmér, I.3
  • 35
    • 84863238012 scopus 로고    scopus 로고
    • Phase change material as a thermal energy storage material for cooling of building
    • Ravikumar, M., and P. S. S. Srinivasan. 2008. Phase change material as a thermal energy storage material for cooling of building. J. Theor. Appl. Inf. Technol. 4:503–511.
    • (2008) J. Theor. Appl. Inf. Technol , vol.4 , pp. 503-511
    • Ravikumar, M.1    Srinivasan, P.S.S.2
  • 36
    • 0037289573 scopus 로고    scopus 로고
    • Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications
    • Zalba, B., M. J. Marin, L. F. Cabeza, and H. Mehling. 2002. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Thermal Energy 23:251–283.
    • (2002) Appl. Thermal Energy , vol.23 , pp. 251-283
    • Zalba, B.1    Marin, M.J.2    Cabeza, L.F.3    Mehling, H.4
  • 37
    • 63249113429 scopus 로고    scopus 로고
    • Enhancing the thermal properties of textiles with phase change materials
    • Erkan, G. 2004. Enhancing the thermal properties of textiles with phase change materials. Res. J. Text. Apparel 8:57–64.
    • (2004) Res. J. Text. Apparel , vol.8 , pp. 57-64
    • Erkan, G.1
  • 39
    • 77957665575 scopus 로고    scopus 로고
    • Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis
    • Agbossou, A., Q. Zhanq, G. Sebald, and D. Guyomar. 2010. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis. Sens. Actuators A 163:284–290.
    • (2010) Sens. Actuators A , vol.163 , pp. 284-290
    • Agbossou, A.1    Zhanq, Q.2    Sebald, G.3    Guyomar, D.4
  • 43
    • 77950595789 scopus 로고    scopus 로고
    • Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators
    • Xie, J., C. Lee, and H. Feng. 2010. Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. J. Microelectromech. Syst. 19:317–324.
    • (2010) J. Microelectromech. Syst , vol.19 , pp. 317-324
    • Xie, J.1    Lee, C.2    Feng, H.3
  • 44
    • 84875179472 scopus 로고    scopus 로고
    • Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process
    • Yang, M. Z., C. C. Wu, C. L. Dai, and W. J. Tsai. 2013. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process. Sensors 13:2359–2367.
    • (2013) Sensors , vol.13 , pp. 2359-2367
    • Yang, M.Z.1    Wu, C.C.2    Dai, C.L.3    Tsai, W.J.4
  • 45
    • 84857998698 scopus 로고    scopus 로고
    • Human powered MEMS-based energy harvest devices
    • Sue, C. H., and N. C. Tsai. 2011. Human powered MEMS-based energy harvest devices. Appl. Energy 93:390–403.
    • (2011) Appl. Energy , vol.93 , pp. 390-403
    • Sue, C.H.1    Tsai, N.C.2
  • 46
    • 79955045600 scopus 로고    scopus 로고
    • Energy harvesting for self-powered wearable devices
    • A. Bonfiglio and D. De Rossi, eds., Springer, New York, NY
    • Leonov, V. 2011. Energy harvesting for self-powered wearable devices. Pp. 27–49 in A. Bonfiglio and D. De Rossi, eds. Wearable monitoring systems. Springer, New York, NY. doi: 10.1007/978-1-4419-7384-9
    • (2011) Wearable Monitoring Systems , pp. 27-49
    • Leonov, V.1
  • 47
    • 84877271121 scopus 로고    scopus 로고
    • Thermoelectric energy harvesting of human body heat for wearable sensors
    • Leonov, V. 2013. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13:2284–2291.
    • (2013) IEEE Sens. J , vol.13 , pp. 2284-2291
    • Leonov, V.1
  • 48
    • 52949100212 scopus 로고    scopus 로고
    • An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices
    • Bradley, P. D. 2006. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. Biomed. Circ. Syst. Conf. 2006:158–161. doi: 10.1109/BIOCAS.2006.4600332
    • (2006) Biomed. Circ. Syst. Conf , vol.2006 , pp. 158-161
    • Bradley, P.D.1
  • 50
    • 84855451681 scopus 로고    scopus 로고
    • Power generation from waste heat in a food processing application
    • Aneke, M., B. Agnew, C. Underwood, H. Wu, and H. Masheiti. 2012. Power generation from waste heat in a food processing application. Appl. Therm. Eng. 36:171–180.
    • (2012) Appl. Therm. Eng , vol.36 , pp. 171-180
    • Aneke, M.1    Agnew, B.2    Underwood, C.3    Wu, H.4    Masheiti, H.5
  • 52
    • 85021948154 scopus 로고    scopus 로고
    • Waste heat recovery: technology and opportunities in U.S. industry, 2008. The Energy Gov website. Available at http://www1.eere.energy.gov (accessed 7 February 2014).
    • (2008) The Energy Gov Website
  • 54
    • 78650565949 scopus 로고    scopus 로고
    • Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators
    • Hsu, C. T., G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao. 2011. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Appl. Energy 88:1291–1297.
    • (2011) Appl. Energy , vol.88 , pp. 1291-1297
    • Hsu, C.T.1    Huang, G.Y.2    Chu, H.S.3    Yu, B.4    Yao, D.J.5
  • 55
    • 85022048651 scopus 로고    scopus 로고
    • Harvesting heat and vibration energy to power wired communication in vehicle safety system, 2013. Available at http://www.digikey.com (accessed 14 May 2014).
    • (2013)
  • 56
    • 84869119524 scopus 로고    scopus 로고
    • Waste thermal energy harvesting from a convection-driven Rijke-Zhao thermo-acoustic-piezo system
    • Zhao, D. 2013. Waste thermal energy harvesting from a convection-driven Rijke-Zhao thermo-acoustic-piezo system. Energy Convers. Manage. 66:87–97.
    • (2013) Energy Convers. Manage , vol.66 , pp. 87-97
    • Zhao, D.1
  • 57
    • 85021933688 scopus 로고    scopus 로고
    • Group of Dielectric Physics website
    • Pyroelectricity. Group of Dielectric Physics website. Available at http://www.gdp.if(accessed 14 June 2014).
  • 58
    • 84870525177 scopus 로고    scopus 로고
    • Pyroelectric energy harvesting using liquid-based switchable thermal Interfaces. Sens
    • Cha, G., and S. Ju. 2013. Pyroelectric energy harvesting using liquid-based switchable thermal Interfaces. Sens. Actuators A 189:100–107.
    • (2013) Actuators A , vol.189 , pp. 100-107
    • Cha, G.1    Ju, S.2
  • 59
    • 84870858623 scopus 로고    scopus 로고
    • Pyroelectric nanogenerators for driving wireless sensors
    • Available at
    • Yang, Y., S. Wang, Y. Zhang, and Z. L. Wang. 2012. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett. 12:6408–6413. Available at http://dx.doi.org/10.1021/nl303755m
    • (2012) Nano Lett , vol.12 , pp. 6408-6413
    • Yang, Y.1    Wang, S.2    Zhang, Y.3    Wang, Z.L.4
  • 60
    • 79957701145 scopus 로고    scopus 로고
    • Solar micro-energy harvesting with pyroelectric effect and wind flow. Sens
    • Zhang, Q., A. Agbossou, Z. Feng, and M. Cosnier. 2011. Solar micro-energy harvesting with pyroelectric effect and wind flow. Sens. Actuators A 168:335–342.
    • (2011) Actuators A , vol.168 , pp. 335-342
    • Zhang, Q.1    Agbossou, A.2    Feng, Z.3    Cosnier, M.4
  • 61
    • 79959817858 scopus 로고    scopus 로고
    • Review and future trend of energy harvesting methods for portable medical devices
    • London, U.K
    • Paulo, J., and P. D. Gaspar. 2010. Review and future trend of energy harvesting methods for portable medical devices. Proceedings of the World Congress on Engineering, London, U.K.
    • (2010) Proceedings of the World Congress on Engineering
    • Paulo, J.1    Gaspar, P.D.2
  • 62
    • 79960553064 scopus 로고    scopus 로고
    • Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations
    • Available at
    • Dow, A. B. A., H. A. Al-Rubaye, D. Koo, M. Schneider, A. Bittner, U. Schmid, et al. 2011. Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations. Smart Sensors, Actuators and MEMS vol. 8066, 7 pages. Available at http://dx.doi.org/10.1117/12.885861
    • (2011) Smart Sensors, Actuators and MEMS , vol.8066
    • Dow, A.B.A.1    Al-Rubaye, H.A.2    Koo, D.3    Schneider, M.4    Bittner, A.5    Schmid, U.6
  • 63
    • 58149343283 scopus 로고    scopus 로고
    • Micromachined energy harvester form a keyboard using combined electromagnetic and piezoelectric conversion
    • Wacharasindhu, T., and J. W. Kwon. 2008. Micromachined energy harvester form a keyboard using combined electromagnetic and piezoelectric conversion. J. Micromech. Microeng. 18:104016.
    • (2008) J. Micromech. Microeng , vol.18
    • Wacharasindhu, T.1    Kwon, J.W.2
  • 64
    • 84878853658 scopus 로고    scopus 로고
    • Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator
    • Li, B., A. J. Laviage, J. H. You, and Y. J. Kim. 2013. Harvesting low-frequency acoustic energy using quarterwavelength straight-tube acoustic resonator. Appl. Acoust. 74:1271–1278.
    • (2013) Appl. Acoust , vol.74 , pp. 1271-1278
    • Li, B.1    Laviage, A.J.2    You, J.H.3    Kim, Y.J.4
  • 65
    • 84885177725 scopus 로고    scopus 로고
    • Widebandwidth piezoelectric energy harvester integrated with parylene-C beam structures
    • Huang, P. C., T. H. Tsai, and Y. J. Yang. 2013. Widebandwidth piezoelectric energy harvester integrated with parylene-C beam structures. Microelectron. Eng. 111:214–219.
    • (2013) Microelectron. Eng , vol.111 , pp. 214-219
    • Huang, P.C.1    Tsai, T.H.2    Yang, Y.J.3
  • 66
    • 84885180223 scopus 로고    scopus 로고
    • Wind energy harvesting based on flow-induced-vibration and impact
    • He, X. F., and J. Gao. 2013. Wind energy harvesting based on flow-induced-vibration and impact. Microelectron. Eng. 111:82–86.
    • (2013) Microelectron. Eng , vol.111 , pp. 82-86
    • He, X.F.1    Gao, J.2
  • 68
    • 80655128525 scopus 로고    scopus 로고
    • Cryogenic electromechanical behaviour of multilayer piezoactuators for fuel injector applications
    • Shindo, Y., F. Narita, and T. Sasakura. 2011. Cryogenic electromechanical behaviour of multilayer piezoactuators for fuel injector applications. J. Appl. Phys. 110:084510–084510-7.
    • (2011) J. Appl. Phys , vol.110
    • Shindo, Y.1    Narita, F.2    Sasakura, T.3
  • 71
    • 69549118614 scopus 로고    scopus 로고
    • Sensitivity and fidelity of a novel piezoelectric middle ear transducer
    • Chi, F. L., Y. Wu, Q. B. Yan, Y. H. Shen, Y. Jiang, and Y. H. Fan. 2009. Sensitivity and fidelity of a novel piezoelectric middle ear transducer. J. Otorhinolaryngol. 71:216–220.
    • (2009) J. Otorhinolaryngol , vol.71 , pp. 216-220
    • Chi, F.L.1    Wu, Y.2    Yan, Q.B.3    Shen, Y.H.4    Jiang, Y.5    Fan, Y.H.6
  • 75
    • 0032046407 scopus 로고    scopus 로고
    • Thinlayer composite unimorph ferroelectric driver and sensor properties
    • Mossi, K. M., G. V. Selby, and R. G. Bryant. 1998. Thinlayer composite unimorph ferroelectric driver and sensor properties. Mater. Lett. 35:39–49.
    • (1998) Mater. Lett , vol.35 , pp. 39-49
    • Mossi, K.M.1    Selby, G.V.2    Bryant, R.G.3
  • 76
    • 84904748998 scopus 로고    scopus 로고
    • Magnetohydrodynamics
    • Dorch, S. B. F. 2007. Magnetohydrodynamics. Scholarpedia 2:2295.
    • (2007) Scholarpedia , pp. 2295
    • Dorch, S.B.F.1
  • 77
    • 84863193358 scopus 로고    scopus 로고
    • Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics
    • Dai, D., J. Liu, and Y. Zhou. 2012. Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics. Front. Energy 6:112–121.
    • (2012) Front. Energy , vol.6 , pp. 112-121
    • Dai, D.1    Liu, J.2    Zhou, Y.3
  • 78
    • 11144222986 scopus 로고    scopus 로고
    • Desco Industries Inc
    • Allen, R. C. 2000. Triboelectric generation: getting charged. Desco Industries Inc. Available at http://www.esdjournal.com/techpapr/ryne/ryntribo.doc (accessed 18 June 2014).
    • (2000) Triboelectric Generation: Getting Charged
    • Allen, R.C.1
  • 79
    • 84885390532 scopus 로고    scopus 로고
    • Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
    • Available at
    • Hou, T. C., Y. Yang, H. Zhang, J. Chen, and Z. L. Wang. 2013. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:856–862. Available at http://dx.doi.org/10.1016/j.nanoen.2013.03.001
    • (2013) Nano Energy , vol.2 , pp. 856-862
    • Hou, T.C.1    Yang, Y.2    Zhang, H.3    Chen, J.4    Wang, Z.L.5
  • 80
    • 84858142463 scopus 로고    scopus 로고
    • Flexible triboelectric generator
    • Fan, F. R., Z. Q. Tian, and Z. L. Wang. 2012. Flexible triboelectric generator. Nano Energy 1:328–334. doi: 10.1016/j.nanoen.2012.01.004
    • (2012) Nano Energy , vol.1 , pp. 328-334
    • Fan, F.R.1    Tian, Z.Q.2    Wang, Z.L.3
  • 81
    • 77955417284 scopus 로고    scopus 로고
    • Thermoacoustic effect of travelling-standing wave
    • Kang, H., G. Zhou, and Q. Li. 2010. Thermoacoustic effect of travelling-standing wave. Cryogenics 50:450–458.
    • (2010) Cryogenics , vol.50 , pp. 450-458
    • Kang, H.1    Zhou, G.2    Li, Q.3
  • 82
    • 0003771749 scopus 로고    scopus 로고
    • Swift, G. 2004. Thermoacoustics. Available at http://www.lanl.gov (accessed 18 June 2014).
    • (2004) Thermoacoustics
    • Swift, G.1
  • 84
    • 33847249957 scopus 로고    scopus 로고
    • Experimental observation on a scale thermoacoustic prime mover
    • Tao, J., Z. Bao-sen, T. Ke, B. Rui, and C. Guo-bang. 2007. Experimental observation on a scale thermoacoustic prime mover. J. Zhejiang Univ. Sci. A 8:205–209.
    • (2007) J. Zhejiang Univ. Sci. A , vol.8 , pp. 205-209
    • Tao, J.1    Bao-Sen, Z.2    Ke, T.3    Rui, B.4    Guo-Bang, C.5
  • 85
    • 84862141069 scopus 로고    scopus 로고
    • Energy harvesting from a standing wave thermo-acousticpiezoelectric resonator
    • Smoker, J., M. Nouh, O. Aldraihem, and A. Baz. 2012. Energy harvesting from a standing wave thermo-acousticpiezoelectric resonator. J. Appl. Phys. 111:104901.
    • (2012) J. Appl. Phys , vol.111
    • Smoker, J.1    Nouh, M.2    Aldraihem, O.3    Baz, A.4
  • 90
    • 85021991715 scopus 로고    scopus 로고
    • Science Daily website
    • Nanowire. Science Daily website. Available at http://www.sciencedaily.com/(accessed 16 December 2013).
  • 92
    • 67349186180 scopus 로고    scopus 로고
    • Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens
    • Falconi, C., G. Mantini, A. D’Amico, and Z. L. Wang. 2009. Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens. Actuators B 139:511–519.
    • (2009) Actuators B , vol.139 , pp. 511-519
    • Falconi, C.1    Mantini, G.2    D’Amico, A.3    Wang, Z.L.4
  • 96
    • 35548954296 scopus 로고    scopus 로고
    • Energy harvesting by magnetostricitve material (MsM) for powering wireless sensors in SHM
    • Wang, L., and F. G. Yuan. 2007. Energy harvesting by magnetostricitve material (MsM) for powering wireless sensors in SHM. SPIE Smart Structures and Materials & NDE Health Monitoring. Available at http://www.mae.ncsu.edu/(accessed 11 January 2014).
    • (2007) SPIE Smart Structures and Materials & NDE Health Monitoring
    • Wang, L.1    Yuan, F.G.2
  • 97
    • 0036577936 scopus 로고    scopus 로고
    • Magnetostrictive properties of galfenol alloys under compressive stress
    • Clark, A. E., M. W. Fogle, J. B. Restorff, and T. A. Lograsso. 2002. Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43:881–886.
    • (2002) Mater. Trans , vol.43 , pp. 881-886
    • Clark, A.E.1    Fogle, M.W.2    Restorff, J.B.3    Lograsso, T.A.4
  • 99
    • 80053531596 scopus 로고    scopus 로고
    • Performance of energy harvester using iron-gallium alloy in free vibration
    • Ueno, T., and S. Yamada. 2011. Performance of energy harvester using iron-gallium alloy in free vibration. IEEE Trans. Magn. 47:2407–2409.
    • (2011) IEEE Trans. Magn , vol.47 , pp. 2407-2409
    • Ueno, T.1    Yamada, S.2
  • 101
    • 84891765569 scopus 로고    scopus 로고
    • An electroactive polymer energy harvester for wireless sensor networks
    • Mckay, T. G., S. Rosset, I. A. Anderson, and H. Shea. 2013. An electroactive polymer energy harvester for wireless sensor networks. J. Phys. 479:1–5. doi: 10.1088/1742-6596/476/1/012117
    • (2013) J. Phys , vol.479 , pp. 1-5
    • McKay, T.G.1    Rosset, S.2    Anderson, I.A.3    Shea, H.4
  • 102
    • 4544347723 scopus 로고    scopus 로고
    • Techniques for minimizing power consumption in low data-rate wireless sensor networks
    • Atlanta, GA
    • Rhee, S., D. Seetharam, and S. Liu. 2004. Techniques for minimizing power consumption in low data-rate wireless sensor networks. Wireless Communications and Networking Conference, Vol 3, Atlanta, GA.
    • (2004) Wireless Communications and Networking Conference , vol.3
    • Rhee, S.1    Seetharam, D.2    Liu, S.3
  • 103
    • 77953129818 scopus 로고    scopus 로고
    • Electromagnetic energy harvesting from flow induced vibration
    • Wang, D. A., and K. H. Chang. 2010. Electromagnetic energy harvesting from flow induced vibration. Microelectron. J. 41:356–364.
    • (2010) Microelectron. J , vol.41 , pp. 356-364
    • Wang, D.A.1    Chang, K.H.2
  • 104
    • 84876215940 scopus 로고    scopus 로고
    • Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies
    • Ashraf, K., M. H. M. Khir, J. O. Dennis, and Z. Baharudin. 2013. Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies. Sens. Actuators A 195:123–132.
    • (2013) Sens. Actuators A , vol.195 , pp. 123-132
    • Ashraf, K.1    Khir, M.H.M.2    Dennis, J.O.3    Baharudin, Z.4
  • 105
    • 84949176971 scopus 로고    scopus 로고
    • Broadband vibration energy harvesting
    • N. Elvin and A. Erturk, eds., Springer, Singapore
    • Tang, L., Y. Yang, and C. K. Soh. 2013. Broadband vibration energy harvesting. Pp. 17–61 in N. Elvin and A. Erturk, eds. Advances in energy harvesting methods. Springer, Singapore.
    • (2013) Advances in Energy Harvesting Methods , pp. 17-61
    • Tang, L.1    Yang, Y.2    Soh, C.K.3
  • 106
    • 84881130856 scopus 로고    scopus 로고
    • Vibration energy harvesting: Machinery vibration, human movement and flow induced vibration
    • Y. K. Tan, ed., InTech, Japan
    • Zhu, D. 2011. Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. Pp. 25–54 in Y. K. Tan, ed. Sustainable energy harvesting technologies–past, present, & future. InTech, Japan.
    • (2011) Sustainable Energy Harvesting technologies–past, Present, & Future , pp. 25-54
    • Zhu, D.1
  • 107
    • 84883288880 scopus 로고    scopus 로고
    • A self-tuning resonator for vibration energy harvesting
    • Aboulfotoh, N. A., M. H. Arafa, and S. M. Megahed. 2013. A self-tuning resonator for vibration energy harvesting. Sens. Actuators A 20:328–334.
    • (2013) Sens. Actuators A , vol.20 , pp. 328-334
    • Aboulfotoh, N.A.1    Arafa, M.H.2    Megahed, S.M.3
  • 110
    • 70350674119 scopus 로고    scopus 로고
    • A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching
    • Challa, V. R., M. G. Prasad, and F. T. Fisher. 2009. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18:1–11.
    • (2009) Smart Mater. Struct , vol.18 , pp. 1-11
    • Challa, V.R.1    Prasad, M.G.2    Fisher, F.T.3
  • 111
    • 41849138249 scopus 로고    scopus 로고
    • A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater
    • Challa, V. R., M. G. Prasad, Y. Shi, and F. T. Fisher. 2008. A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17:1–10.
    • (2008) Struct , vol.17 , pp. 1-10
    • Challa, V.R.1    Prasad, M.G.2    Shi, Y.3    Fisher, F.T.4
  • 113
    • 84863229502 scopus 로고    scopus 로고
    • Hybrid cells for simultaneously harvesting multi-type energies for selfpowered micro/nanosystem
    • Xu, C., C. Pan, Y. Liu, and Z. L. Yang. 2012. Hybrid cells for simultaneously harvesting multi-type energies for selfpowered micro/nanosystem. Nano Energy 1:259–272.
    • (2012) Nano Energy , vol.1 , pp. 259-272
    • Xu, C.1    Pan, C.2    Liu, Y.3    Yang, Z.L.4
  • 114
    • 84880856847 scopus 로고    scopus 로고
    • Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets
    • Belhora, F., P. J. Cottinet, A. Hajjaji, D. Guyomar, M. Mazroui, L. Lebrun, et al. 2013. Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets. Sens. Actuators A 201:58–65.
    • (2013) Sens. Actuators A , vol.201 , pp. 58-65
    • Belhora, F.1    Cottinet, P.J.2    Hajjaji, A.3    Guyomar, D.4    Mazroui, M.5    Lebrun, L.6
  • 118
    • 70449911809 scopus 로고    scopus 로고
    • On thermoelectric and pyroelectric energy harvesting
    • Sebald, G., D. Guyomar, and A. Agbossou. 2009. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18:1–7.
    • (2009) Smart Mater. Struct , vol.18 , pp. 1-7
    • Sebald, G.1    Guyomar, D.2    Agbossou, A.3
  • 120
    • 84896920017 scopus 로고    scopus 로고
    • Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and selfpowered active acoustic sensing
    • Yang, J., J. Chen, Y. Liu, W. Yang, Y. Su, and Z. L. Wang. 2014. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and selfpowered active acoustic sensing. ACS Nano 8:2649–2657.
    • (2014) ACS Nano , vol.8 , pp. 2649-2657
    • Yang, J.1    Chen, J.2    Liu, Y.3    Yang, W.4    Su, Y.5    Wang, Z.L.6
  • 122
    • 85021898747 scopus 로고    scopus 로고
    • The PhysOrg website
    • Tiny turbine in human artery harvests energy from blood flow. The PhysOrg website. Available at http://phys.org (accessed 4 February 2014).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.