메뉴 건너뛰기




Volumn 24, Issue 11, 2015, Pages 4172-4184

Hierarchical learning of tree classifiers for large-scale plant species identification

Author keywords

discriminative tree classifiers; Hierarchical multi task structural learning; inter level relationship constraint; large scale plant species identification; visual tree

Indexed keywords

ALGORITHMS; FORESTRY; IMAGE CODING; TREES (MATHEMATICS);

EID: 84939496346     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2015.2457337     Document Type: Article
Times cited : (73)

References (75)
  • 2
    • 84857658510 scopus 로고    scopus 로고
    • Plant species identification using digital morphometrics: A review
    • J. S. Cope, D. Corney, J. Y. Clark, P. Remagnino, and P. Wilkin, Plant species identification using digital morphometrics: A review, Expert Syst. Appl., vol. 39, no. 8, pp. 7562-7573, 2012.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.8 , pp. 7562-7573
    • Cope, J.S.1    Corney, D.2    Clark, J.Y.3    Remagnino, P.4    Wilkin, P.5
  • 3
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 4
    • 2342518200 scopus 로고    scopus 로고
    • Moment invariants for recognition under changing viewpoint and illumination
    • F. Mindru, T. Tuytelaars, L. Van Gool, and T. Moons, Moment invariants for recognition under changing viewpoint and illumination, Comput. Vis. Image Understand., vol. 94, nos. 1-3, pp. 3-27, 2004.
    • (2004) Comput. Vis. Image Understand. , vol.94 , Issue.1-3 , pp. 3-27
    • Mindru, F.1    Tuytelaars, T.2    Van Gool, L.3    Moons, T.4
  • 5
    • 0242456421 scopus 로고    scopus 로고
    • Review of shape representation and description techniques
    • D. Zhang and G. Lu, Review of shape representation and description techniques, Pattern Recognit., vol. 37, no. 1, pp. 1-19, 2004.
    • (2004) Pattern Recognit. , vol.37 , Issue.1 , pp. 1-19
    • Zhang, D.1    Lu, G.2
  • 7
    • 33749572922 scopus 로고    scopus 로고
    • First steps toward an electronic field guide for plants
    • G. Agarwal et al., First steps toward an electronic field guide for plants, Taxon, vol. 55, no. 3, pp. 597-610, 2006.
    • (2006) Taxon , vol.55 , Issue.3 , pp. 597-610
    • Agarwal, G.1
  • 8
    • 56749155560 scopus 로고    scopus 로고
    • Searching the worlds herbaria: A system for visual identification of plant species
    • P. N. Belhumeur et al., Searching the worlds herbaria: A system for visual identification of plant species, in Proc. 10th ECCV, 2008, pp. 116-129.
    • (2008) Proc. 10th ECCV , pp. 116-129
    • Belhumeur, P.N.1
  • 9
    • 84867839734 scopus 로고    scopus 로고
    • Leafsnap: A computer vision system for automatic plant species identification
    • N. Kumar et al., Leafsnap: A computer vision system for automatic plant species identification, in Proc. 12th ECCV, 2012, pp. 502-516.
    • (2012) Proc. 12th ECCV , pp. 502-516
    • Kumar, N.1
  • 10
    • 2442497231 scopus 로고    scopus 로고
    • Matching shapes with self-intersections: Application to leaf classification
    • May
    • F. Mokhtarian and S. Abbasi, Matching shapes with self-intersections: Application to leaf classification, IEEE Trans. Image Process., vol. 13, no. 5, pp. 653-661, May 2004.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.5 , pp. 653-661
    • Mokhtarian, F.1    Abbasi, S.2
  • 11
    • 84893206417 scopus 로고    scopus 로고
    • The ImageCLEF 2012 plant identification task
    • Valencia, Spain, Sep.
    • H. Goeau et al., The ImageCLEF 2012 plant identification task, CLEF, Valencia, Spain, Sep. 2013.
    • (2013) CLEF
    • Goeau, H.1
  • 12
    • 0025511038 scopus 로고
    • Plant identification using color co-occurrence matrices
    • S. A. Shearer and R. G. Holmes, Plant identification using color co-occurrence matrices, Trans. ASAE, vol. 33, no. 6, pp. 2037-2044, 1990.
    • (1990) Trans. ASAE , vol.33 , Issue.6 , pp. 2037-2044
    • Shearer, S.A.1    Holmes, R.G.2
  • 13
    • 0002811038 scopus 로고    scopus 로고
    • PA-Precision agriculture: Computer-visionbased weed identification under field conditions using controlled lighting
    • J. Hemming and T. Rath, PA-Precision agriculture: Computer-visionbased weed identification under field conditions using controlled lighting, J. Agricult. Eng. Res., vol. 78, no. 3, pp. 233-243, 2001.
    • (2001) J. Agricult. Eng. Res. , vol.78 , Issue.3 , pp. 233-243
    • Hemming, J.1    Rath, T.2
  • 14
    • 84957702783 scopus 로고    scopus 로고
    • Reliable classification of chrysanthemum leaves through curvature scale space
    • Berlin, Germany: Springer. Verlag
    • S. Abbasi, F. Mokhtarian, and J. Kittler, Reliable classification of chrysanthemum leaves through curvature scale space, in Scale-Space Theory in Computer Vision. Berlin, Germany: Springer-Verlag, 1997, pp. 284-295.
    • (1997) Scale-Space Theory in Computer Vision , pp. 284-295
    • Abbasi, S.1    Mokhtarian, F.2    Kittler, J.3
  • 15
    • 30344459978 scopus 로고    scopus 로고
    • Plant species identification using elliptic Fourier leaf shape analysis
    • J. C. Neto, G. E. Meyer, D. D. Jones, and A. K. Samal, Plant species identification using elliptic Fourier leaf shape analysis, Comput. Electron. Agricult., vol. 50, no. 2, pp. 121-134, 2006.
    • (2006) Comput. Electron. Agricult. , vol.50 , Issue.2 , pp. 121-134
    • Neto, J.C.1    Meyer, G.E.2    Jones, D.D.3    Samal, A.K.4
  • 17
    • 0043098025 scopus 로고    scopus 로고
    • Automatic recognition of wild flowers
    • Aug
    • T. Saitoh and T. Kaneko, Automatic recognition of wild flowers, in Proc. IEEE 15th ICPR, Aug. 2000, pp. 507-510.
    • (2000) Proc. IEEE 15th ICPR , pp. 507-510
    • Saitoh, T.1    Kaneko, T.2
  • 18
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • Jun
    • M.-E. Nilsback and A. Zisserman, A visual vocabulary for flower classification, in Proc. IEEE CVPR, Jun. 2006, pp. 1447-1454.
    • (2006) Proc. IEEE CVPR , pp. 1447-1454
    • Nilsback, M.-E.1    Zisserman, A.2
  • 19
    • 0032663356 scopus 로고    scopus 로고
    • Image retrieval: Current techniques, promising directions, and open issues
    • Y. Rui, T. S. Huang, and S.-F. Chang, Image retrieval: Current techniques, promising directions, and open issues, J. Vis. Commun. Image Represent., vol. 10, no. 1, pp. 39-62, 1999.
    • (1999) J. Vis. Commun. Image Represent. , vol.10 , Issue.1 , pp. 39-62
    • Rui, Y.1    Huang, T.S.2    Chang, S.-F.3
  • 21
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • Art. ID 5
    • R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image retrieval: Ideas, influences, and trends of the new age, ACM Comput. Surv., vol. 40, no. 2, 2008, Art. ID 5.
    • (2008) ACM Comput. Surv. , vol.40 , Issue.2
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 22
    • 84866495980 scopus 로고    scopus 로고
    • Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection
    • Oct
    • J. Fan, X. He, N. Zhou, J. Peng, and R. Jain, Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection, IEEE Trans. Multimedia, vol. 14, no. 5, pp. 1414-1428, Oct. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.5 , pp. 1414-1428
    • Fan, J.1    He, X.2    Zhou, N.3    Peng, J.4    Jain, R.5
  • 24
    • 84887345559 scopus 로고    scopus 로고
    • Sparse output coding for large-scale visual recognition
    • Jun
    • B. Zhao and E. P. Xing, Sparse output coding for large-scale visual recognition, in Proc. IEEE CVPR, Jun. 2013, pp. 3350-3357.
    • (2013) Proc. IEEE CVPR , pp. 3350-3357
    • Zhao, B.1    Xing, E.P.2
  • 25
    • 77951207698 scopus 로고    scopus 로고
    • Improving bag-of-features for large scale image search
    • H. Jegou, M. Douze, and C. Schmid, Improving bag-of-features for large scale image search, Int. J. Comput. Vis., vol. 87, no. 3, pp. 316-336, 2011.
    • (2011) Int. J. Comput. Vis. , vol.87 , Issue.3 , pp. 316-336
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 26
    • 84866674680 scopus 로고    scopus 로고
    • Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition
    • Jun
    • J. Deng, J. Krause, A. C. Berg, and F.-F. Li, Hedging your bets: Optimizing accuracy-specificity trade-offs in large scale visual recognition, in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 3450-3457.
    • (2012) Proc. IEEE Conf. CVPR , pp. 3450-3457
    • Deng, J.1    Krause, J.2    Berg, A.C.3    Li, F.-F.4
  • 27
    • 84897515863 scopus 로고    scopus 로고
    • Large-scale category structure aware image categorization
    • B. Zhao, F. Li, and E. P. Xing, Large-scale category structure aware image categorization, in Proc. Adv. NIPS, 2011, pp. 1251-1259.
    • (2011) Proc. Adv. NIPS , pp. 1251-1259
    • Zhao, B.1    Li, F.2    Xing, E.P.3
  • 28
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • Apr
    • T. Evgeniou, C. A. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, J. Mach. Learn. Res., vol. 6, pp. 615-637, Apr. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.A.2    Pontil, M.3
  • 29
    • 40849134401 scopus 로고    scopus 로고
    • Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation
    • Mar
    • J. Fan, Y. Gao, and H. Luo, Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation, IEEE Trans. Image Process., vol. 17, no. 3, pp. 407-426, Mar. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.3 , pp. 407-426
    • Fan, J.1    Gao, Y.2    Luo, H.3
  • 30
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multiclass object detection
    • Jun./Jul
    • A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing features: Efficient boosting procedures for multiclass object detection, in Proc. IEEE Comput. Soc. Conf. CVPR, Jun./Jul. 2004, pp. II-762-II-769.
    • (2004) Proc. IEEE Comput. Soc. Conf. CVPR , pp. II762-II769
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 31
    • 33750303526 scopus 로고    scopus 로고
    • TreeBoost.MH: A boosting algorithm for multi-label hierarchical text categorization
    • A. Esuli, T. Fagni, and F. Sebastiani, TreeBoost.MH: A boosting algorithm for multi-label hierarchical text categorization, in Proc. 12th Int. Conf. SPIRE, 2006, pp. 13-24.
    • (2006) Proc. 12th Int. Conf. SPIRE , pp. 13-24
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 32
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Dec
    • R. K. Ando and T. Zhang, A framework for learning predictive structures from multiple tasks and unlabeled data, J. Mach. Learn. Res., vol. 6, pp. 1817-1853, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 35
    • 18744367558 scopus 로고    scopus 로고
    • Hierarchical document categorization with support vector machines
    • L. Cai and T. Hofmann, Hierarchical document categorization with support vector machines, in Proc. 13th ACM CIKM, 2004, pp. 78-87.
    • (2004) Proc. 13th ACM CIKM , pp. 78-87
    • Cai, L.1    Hofmann, T.2
  • 37
    • 46249113842 scopus 로고    scopus 로고
    • Improving classification when a class hierarchy is available using a hierarchy-based prior
    • R. M. Neal and B. Shahbaba, Improving classification when a class hierarchy is available using a hierarchy-based prior, Bayesian Anal., vol. 2, no. 1, pp. 221-237, 2007.
    • (2007) Bayesian Anal. , vol.2 , Issue.1 , pp. 221-237
    • Neal, R.M.1    Shahbaba, B.2
  • 38
    • 0002346866 scopus 로고    scopus 로고
    • Hierarchically classifying documents using very few words
    • D. Koller and M. Sahami, Hierarchically classifying documents using very few words, in Proc. 14th ICML, 1997, pp. 170-178.
    • (1997) Proc. 14th ICML , pp. 170-178
    • Koller, D.1    Sahami, M.2
  • 39
    • 0002332781 scopus 로고    scopus 로고
    • Improving text classification by shrinkage in a hierarchy of classes
    • A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, Improving text classification by shrinkage in a hierarchy of classes, in Proc. 15th ICML, 1998, pp. 359-367.
    • (1998) Proc. 15th ICML , pp. 359-367
    • McCallum, A.1    Rosenfeld, R.2    Mitchell, T.M.3    Ng, A.Y.4
  • 40
    • 84877768958 scopus 로고    scopus 로고
    • Bayesian models for large-scale hierarchical classification
    • S. Gopal, Y. Yang, B. Bai, and A. Niculescu-Mizil, Bayesian models for large-scale hierarchical classification, in Proc. Adv. NIPS, 2012, pp. 2411-2419.
    • (2012) Proc. Adv. NIPS , pp. 2411-2419
    • Gopal, S.1    Yang, Y.2    Bai, B.3    Niculescu-Mizil, A.4
  • 41
    • 29644438951 scopus 로고    scopus 로고
    • Large margin hierarchical classification
    • O. Dekel, J. Keshet, and Y. Singer, Large margin hierarchical classification, in Proc. 21st ICML, 2004, p. 27.
    • (2004) Proc. 21st ICML , pp. 27
    • Dekel, O.1    Keshet, J.2    Singer, Y.3
  • 42
    • 70349777820 scopus 로고    scopus 로고
    • On large margin hierarchical classification with multiple paths
    • J. Wang, X. Shen, and W. Pan, On large margin hierarchical classification with multiple paths, J. Amer. Statist. Assoc., vol. 104, no. 487, pp. 1213-1223, 2009.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , Issue.487 , pp. 1213-1223
    • Wang, J.1    Shen, X.2    Pan, W.3
  • 44
    • 36448975789 scopus 로고    scopus 로고
    • Hierarchical classification for automatic image annotation
    • J. Fan, Y. Gao, and H. Luo, Hierarchical classification for automatic image annotation, in Proc. 30th Annu. Int. ACM SIGIR, 2007, pp. 111-118.
    • (2007) Proc. 30th Annu. Int. ACM SIGIR , pp. 111-118
    • Fan, J.1    Gao, Y.2    Luo, H.3
  • 45
    • 33747626730 scopus 로고    scopus 로고
    • Large-scale concept ontology for multimedia
    • Jul./Sep
    • M. Naphade et al., Large-scale concept ontology for multimedia, IEEE Multimedia, vol. 13, no. 3, pp. 86-91, Jul./Sep. 2006.
    • (2006) IEEE Multimedia , vol.13 , Issue.3 , pp. 86-91
    • Naphade, M.1
  • 46
    • 56749131142 scopus 로고    scopus 로고
    • Constructing category hierarchies for visual recognition
    • M. Marszalek and C. Schmid, Constructing category hierarchies for visual recognition, in Proc. 10th ECCV, 2008, pp. 479-491.
    • (2008) Proc. 10th ECCV , pp. 479-491
    • Marszalek, M.1    Schmid, C.2
  • 47
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • Jun
    • D. Nister and H. Stewenius, Scalable recognition with a vocabulary tree, in Proc. IEEE CVPR, Jun. 2006, pp. 2161-2168.
    • (2006) Proc. IEEE CVPR , pp. 2161-2168
    • Nister, D.1    Stewenius, H.2
  • 48
    • 51949092342 scopus 로고    scopus 로고
    • Learning and using taxonomies for fast visual categorization
    • Jun
    • G. Griffin and P. Perona, Learning and using taxonomies for fast visual categorization, in Proc. IEEE Conf. CVPR, Jun. 2008, pp. 1-8.
    • (2008) Proc. IEEE Conf. CVPR , pp. 1-8
    • Griffin, G.1    Perona, P.2
  • 49
    • 85162050606 scopus 로고    scopus 로고
    • Label embedding trees for large multi-class tasks
    • S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, in Proc. Adv. NIPS, 2010, pp. 163-171.
    • (2010) Proc. Adv. NIPS , pp. 163-171
    • Bengio, S.1    Weston, J.2    Grangier, D.3
  • 51
    • 85162353669 scopus 로고    scopus 로고
    • Fast and balanced: Efficient label tree learning for large scale object recognition
    • J. Deng, S. Satheesh, A. C. Berg, and F. Li, Fast and balanced: Efficient label tree learning for large scale object recognition, in Proc. Adv. NIPS, 2011, pp. 567-575.
    • (2011) Proc. Adv. NIPS , pp. 567-575
    • Deng, J.1    Satheesh, S.2    Berg, A.C.3    Li, F.4
  • 52
    • 84887356989 scopus 로고    scopus 로고
    • Probabilistic label trees for efficient large scale image classification
    • Jun
    • B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu, Probabilistic label trees for efficient large scale image classification, in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 843-850.
    • (2013) Proc. IEEE Conf. CVPR , pp. 843-850
    • Liu, B.1    Sadeghi, F.2    Tappen, M.3    Shamir, O.4    Liu, C.5
  • 54
    • 84856654322 scopus 로고    scopus 로고
    • Discriminative learning of relaxed hierarchy for large-scale visual recognition
    • Nov
    • T. Gao and D. Koller, Discriminative learning of relaxed hierarchy for large-scale visual recognition, in Proc. IEEE ICCV, Nov. 2011, pp. 2072-2079.
    • (2011) Proc. IEEE ICCV , pp. 2072-2079
    • Gao, T.1    Koller, D.2
  • 55
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug
    • J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 56
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 57
    • 14644422552 scopus 로고    scopus 로고
    • Beyond pixels: Exploiting camera metadata for photo classification
    • M. Boutell and J. Luo, Beyond pixels: Exploiting camera metadata for photo classification, Pattern Recognit., vol. 38, no. 6, pp. 935-946, 2005.
    • (2005) Pattern Recognit. , vol.38 , Issue.6 , pp. 935-946
    • Boutell, M.1    Luo, J.2
  • 58
    • 33947236748 scopus 로고    scopus 로고
    • Rapid biologically-inspired scene classification using features shared with visual attention
    • Feb
    • C. Siagian and L. Itti, Rapid biologically-inspired scene classification using features shared with visual attention, IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2, pp. 300-312, Feb. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.2 , pp. 300-312
    • Siagian, C.1    Itti, L.2
  • 59
    • 2342589340 scopus 로고    scopus 로고
    • Contrast-based image attention analysis by using fuzzy growing
    • Y. Ma and H.-J. Zhang, Contrast-based image attention analysis by using fuzzy growing, in Proc. 11th ACM Multimedia, 2003, pp. 374-381.
    • (2003) Proc. 11th ACM Multimedia , pp. 374-381
    • Ma, Y.1    Zhang, H.-J.2
  • 60
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake, GrabCut: Interactive foreground extraction using iterated graph cuts, ACM Trans. Graph., vol. 23, no. 3, pp. 309-314, 2004.
    • (2004) ACM Trans. Graph. , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 61
    • 77954603019 scopus 로고    scopus 로고
    • A framework for feature selection in clustering
    • D. M. Witten and R. Tibshirani, A framework for feature selection in clustering, J. Amer. Statist. Assoc., vol. 105, no. 490, pp. 713-726, 2010.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , Issue.490 , pp. 713-726
    • Witten, D.M.1    Tibshirani, R.2
  • 62
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dec
    • J. G. Dy and C. E. Brodley, Feature selection for unsupervised learning, J. Mach. Learn. Res., vol. 5, pp. 845-889, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 63
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Sep
    • M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, Simultaneous feature selection and clustering using mixture models, IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.C.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 64
    • 84899029465 scopus 로고    scopus 로고
    • Feature selection in clustering problems
    • V. Roth and T. Lange, Feature selection in clustering problems, in Proc. Adv. NIPS, 2004, pp. 473-480.
    • (2004) Proc. Adv. NIPS , pp. 473-480
    • Roth, V.1    Lange, T.2
  • 68
    • 84885670722 scopus 로고    scopus 로고
    • Large multi-class image categorization with ensembles of label trees
    • Jul
    • Y. Wang and D. Forsyth, Large multi-class image categorization with ensembles of label trees, in Proc. IEEE ICME, Jul. 2013, pp. 1-6.
    • (2013) Proc. IEEE ICME , pp. 1-6
    • Wang, Y.1    Forsyth, D.2
  • 70
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • Jun
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, Salient object detection: A discriminative regional feature integration approach, in Proc. IEEE CVPR, Jun. 2013, pp. 2083-2090.
    • (2013) Proc. IEEE CVPR , pp. 2083-2090
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 74
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • Jun
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, Saliency filters: Contrast based filtering for salient region detection, in Proc. IEEE Conf. CVPR, Jun. 2012, pp. 733-740.
    • (2012) Proc. IEEE Conf. CVPR , pp. 733-740
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 75
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.