-
1
-
-
85043875566
-
-
For selected reviews, se
-
For selected reviews, see:
-
-
-
-
2
-
-
79954627461
-
-
K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435;
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 2435
-
-
Huang, K.1
Sun, C.-L.2
Shi, Z.-J.3
-
6
-
-
85043870155
-
-
For reviews on decarboxylative transformations, se
-
For reviews on decarboxylative transformations, see:
-
-
-
-
7
-
-
77956670170
-
-
L. J. Gooßen, N. Rodríguez, K. Gooßen, Angew. Chem. Int. Ed. 2008, 47, 3100;
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 3100
-
-
Gooßen, L.J.1
Rodríguez, N.2
Gooßen, K.3
-
8
-
-
54749151096
-
-
Angew. Chem. 2008, 120, 3144;
-
(2008)
Angew. Chem.
, vol.120
, pp. 3144
-
-
-
11
-
-
84863461356
-
-
For a review on catalytic borylation of (pseudo)haloarenes, see, in, 2nd ed., (Ed. D. G. Hall, Wiley-VCH, Weinhei
-
For a review on catalytic borylation of (pseudo)haloarenes, see: T. Ishiyama, N. Miyaura in Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, Vol. 1, 2nd ed. (Ed.: D. G. Hall), Wiley-VCH, Weinheim, 2011, pp. 135–170.
-
(2011)
Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, Vol. 1
, pp. 135-170
-
-
Ishiyama, T.1
Miyaura, N.2
-
12
-
-
85043887098
-
-
For selected reviews on borylative cleavage of the C−H bond, se
-
For selected reviews on borylative cleavage of the C−H bond, see:
-
-
-
-
13
-
-
77349125577
-
-
I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890;
-
(2010)
Chem. Rev.
, vol.110
, pp. 890
-
-
Mkhalid, I.A.I.1
Barnard, J.H.2
Marder, T.B.3
Murphy, J.M.4
Hartwig, J.F.5
-
16
-
-
85043842741
-
-
For borylative cleavage of the ethereal C−O bond, se
-
For borylative cleavage of the ethereal C−O bond, see:
-
-
-
-
17
-
-
84922354083
-
-
H. Kinuta, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2015, 137, 1593;
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 1593
-
-
Kinuta, H.1
Tobisu, M.2
Chatani, N.3
-
18
-
-
84930680277
-
-
C. Zarate, R. Manzano, R. Martin, J. Am. Chem. Soc. 2015, 137, 6754;
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6754
-
-
Zarate, C.1
Manzano, R.2
Martin, R.3
-
19
-
-
84952643740
-
-
K. Nakamura, M. Tobisu, N. Chatani, Org. Lett. 2015, 17, 6142;
-
(2015)
Org. Lett.
, vol.17
, pp. 6142
-
-
Nakamura, K.1
Tobisu, M.2
Chatani, N.3
-
20
-
-
84973636297
-
-
M. Tobisu, J. Zhao, H. Kinuta, T. Furukawa, T. Igarashi, N. Chatani, Adv. Synth. Catal. 2016, 358, 2417.
-
(2016)
Adv. Synth. Catal.
, vol.358
, pp. 2417
-
-
Tobisu, M.1
Zhao, J.2
Kinuta, H.3
Furukawa, T.4
Igarashi, T.5
Chatani, N.6
-
21
-
-
85043921929
-
-
For borylative cleavage of the C−N bond, se
-
For borylative cleavage of the C−N bond, see:
-
-
-
-
22
-
-
84860602135
-
-
J. Zhang, X. Wang, H. Yu, J. Ye, Synlett 2012, 23, 1394;
-
(2012)
Synlett
, vol.23
, pp. 1394
-
-
Zhang, J.1
Wang, X.2
Yu, H.3
Ye, J.4
-
23
-
-
84899023842
-
-
M. Tobisu, K. Nakamura, N. Chatani, J. Am. Chem. Soc. 2014, 136, 5587;
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5587
-
-
Tobisu, M.1
Nakamura, K.2
Chatani, N.3
-
24
-
-
84946434032
-
-
H. Zhang, S. Hagihara, K. Itami, Chem. Eur. J. 2015, 21, 16796;
-
(2015)
Chem. Eur. J.
, vol.21
, pp. 16796
-
-
Zhang, H.1
Hagihara, S.2
Itami, K.3
-
25
-
-
84953791790
-
-
J. Hu, H. Sun, W. Cai, X. Pu, Y. Zhang, Z. Shi, J. Org. Chem. 2016, 81, 14.
-
(2016)
J. Org. Chem.
, vol.81
, pp. 14
-
-
Hu, J.1
Sun, H.2
Cai, W.3
Pu, X.4
Zhang, Y.5
Shi, Z.6
-
26
-
-
85043867298
-
-
For borylative cleavage of the C−CN bond, se
-
For borylative cleavage of the C−CN bond, see:
-
-
-
-
27
-
-
84855690955
-
-
M. Tobisu, H. Kinuta, Y. Kita, E. Rémond, N. Chatani, J. Am. Chem. Soc. 2012, 134, 115;
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 115
-
-
Tobisu, M.1
Kinuta, H.2
Kita, Y.3
Rémond, E.4
Chatani, N.5
-
28
-
-
84873614896
-
-
H. Kinuta, Y. Kita, E. Rémond, M. Tobisu, N. Chatani, Synthesis 2012, 44, 2999;
-
(2012)
Synthesis
, vol.44
, pp. 2999
-
-
Kinuta, H.1
Kita, Y.2
Rémond, E.3
Tobisu, M.4
Chatani, N.5
-
30
-
-
85043849306
-
-
For borylative cleavage of the C−F bond, se
-
For borylative cleavage of the C−F bond, see:
-
-
-
-
31
-
-
84943526358
-
-
X.-W. Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc. 2015, 137, 12470;
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 12470
-
-
Liu, X.-W.1
Echavarren, J.2
Zarate, C.3
Martin, R.4
-
32
-
-
84947810665
-
-
T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am. Chem. Soc. 2015, 137, 14313;
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 14313
-
-
Niwa, T.1
Ochiai, H.2
Watanabe, Y.3
Hosoya, T.4
-
33
-
-
84960380643
-
-
A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J. Am. Chem. Soc. 2016, 138, 2985;
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2985
-
-
Mfuh, A.M.1
Doyle, J.D.2
Chhetri, B.3
Arman, H.D.4
Larionov, O.V.5
-
34
-
-
84966293212
-
-
J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc. 2016, 138, 5250.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 5250
-
-
Zhou, J.1
Kuntze-Fechner, M.W.2
Bertermann, R.3
Paul, U.S.D.4
Berthel, J.H.J.5
Friedrich, A.6
Du, Z.7
Marder, T.B.8
Radius, U.9
-
35
-
-
85043946276
-
-
For borylative cleavage of the C−S bond, se
-
For borylative cleavage of the C−S bond, see:
-
-
-
-
36
-
-
84973480853
-
-
Y. Uetake, T. Niwa, T. Hosoya, Org. Lett. 2016, 18, 2758;
-
(2016)
Org. Lett.
, vol.18
, pp. 2758
-
-
Uetake, Y.1
Niwa, T.2
Hosoya, T.3
-
37
-
-
84975257576
-
-
M. Bhanuchandra, A. Baralle, S. Otsuka, K. Nogi, H. Yorimitsu, A. Osuka, Org. Lett. 2016, 18, 2966.
-
(2016)
Org. Lett.
, vol.18
, pp. 2966
-
-
Bhanuchandra, M.1
Baralle, A.2
Otsuka, S.3
Nogi, K.4
Yorimitsu, H.5
Osuka, A.6
-
38
-
-
84959018638
-
-
Decarboxylative transformations of aliphatic carboxylic acids were recently achieved under mild conditions using photoredox catalysis reactions. For example, see, references therein
-
Decarboxylative transformations of aliphatic carboxylic acids were recently achieved under mild conditions using photoredox catalysis reactions. For example, see: Z. Zuo, H. Cong, W. Li, J. Choi, G. C. Fu, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 1832, and references therein.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 1832
-
-
Zuo, Z.1
Cong, H.2
Li, W.3
Choi, J.4
Fu, G.C.5
MacMillan, D.W.C.6
-
39
-
-
85043851664
-
-
For recent metal-catalyzed decarbonylative transformations of carboxylic acid derivatives, se
-
For recent metal-catalyzed decarbonylative transformations of carboxylic acid derivatives, see:
-
-
-
-
41
-
-
79955554079
-
-
S. E. Havlik, J. M. Simmons, V. J. Winton, J. B. Johnson, J. Org. Chem. 2011, 76, 3588;
-
(2011)
J. Org. Chem.
, vol.76
, pp. 3588
-
-
Havlik, S.E.1
Simmons, J.M.2
Winton, V.J.3
Johnson, J.B.4
-
42
-
-
84865430497
-
-
K. Amaike, K. Muto, J. Yamaguchi, K. Itami, J. Am. Chem. Soc. 2012, 134, 13573;
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 13573
-
-
Amaike, K.1
Muto, K.2
Yamaguchi, J.3
Itami, K.4
-
43
-
-
84871587443
-
-
J. Wang, B. Liu, H. Zhao, J. Wang, Organometallics 2012, 31, 8598;
-
(2012)
Organometallics
, vol.31
, pp. 8598
-
-
Wang, J.1
Liu, B.2
Zhao, H.3
Wang, J.4
-
44
-
-
84934325537
-
-
K. Muto, J. Yamaguchi, D. G. Musaev, K. Itami, Nat. Commun. 2015, 6, 7508;
-
(2015)
Nat. Commun.
, vol.6
, pp. 7508
-
-
Muto, K.1
Yamaguchi, J.2
Musaev, D.G.3
Itami, K.4
-
46
-
-
84963684855
-
-
Angew. Chem. 2015, 127, 14726;
-
(2015)
Angew. Chem.
, vol.127
, pp. 14726
-
-
-
48
-
-
84973097170
-
-
S. Shi, G. Meng, M. Szostak, Angew. Chem. Int. Ed. 2016, 55, 6959;
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 6959
-
-
Shi, S.1
Meng, G.2
Szostak, M.3
-
49
-
-
84988582894
-
-
Angew. Chem. 2016, 128, 7073;
-
(2016)
Angew. Chem.
, vol.128
, pp. 7073
-
-
-
50
-
-
85000961961
-
-
C. Liu, G. Meng, M. Szostak, J. Org. Chem. 2016, 81, 12023.
-
(2016)
J. Org. Chem.
, vol.81
, pp. 12023
-
-
Liu, C.1
Meng, G.2
Szostak, M.3
-
51
-
-
85043879782
-
-
The transition-metal-mediated decarbonylation process typically proceeds even at room temperature. For selected examples, se
-
The transition-metal-mediated decarbonylation process typically proceeds even at room temperature. For selected examples, see:
-
-
-
-
55
-
-
0013499505
-
-
G. R. Clark, W. R. Roper, L. J. Wright, V. P. D. Yap, Organometallics 1997, 16, 5135;
-
(1997)
Organometallics
, vol.16
, pp. 5135
-
-
Clark, G.R.1
Roper, W.R.2
Wright, L.J.3
Yap, V.P.D.4
-
56
-
-
11044234764
-
-
N. Oberbeckmann-Winter, P. Braunstein, R. Welter, Organometallics 2004, 23, 6311;
-
(2004)
Organometallics
, vol.23
, pp. 6311
-
-
Oberbeckmann-Winter, N.1
Braunstein, P.2
Welter, R.3
-
57
-
-
84856692181
-
-
R. Ciganda, M. A. Garralda, L. Ibarlucea, C. Mendicute-Fierro, M. C. Torralba, M. R. Tprres, Inorg. Chem. 2012, 51, 1760.
-
(2012)
Inorg. Chem.
, vol.51
, pp. 1760
-
-
Ciganda, R.1
Garralda, M.A.2
Ibarlucea, L.3
Mendicute-Fierro, C.4
Torralba, M.C.5
Tprres, M.R.6
-
58
-
-
84973364904
-
-
J. Hu, Y. Zhao, J. Liu, Y. Zhang, Z. Shi, Angew. Chem. Int. Ed. 2016, 55, 8718;
-
(2016)
Angew. Chem. Int. Ed.
, vol.55
, pp. 8718
-
-
Hu, J.1
Zhao, Y.2
Liu, J.3
Zhang, Y.4
Shi, Z.5
-
59
-
-
84988561110
-
-
Angew. Chem. 2016, 128, 8860;
-
(2016)
Angew. Chem.
, vol.128
, pp. 8860
-
-
-
60
-
-
84990938388
-
-
X. Pu, J. Hu, Y. Zhao, Z. Shi, ACS Catal. 2016, 6, 6692;
-
(2016)
ACS Catal.
, vol.6
, pp. 6692
-
-
Pu, X.1
Hu, J.2
Zhao, Y.3
Shi, Z.4
-
63
-
-
85043894769
-
-
For selected reviews on catalytic transformation by oxidative addition of the C−S bond, se
-
For selected reviews on catalytic transformation by oxidative addition of the C−S bond, see:
-
-
-
-
66
-
-
72949103381
-
-
Angew. Chem. 2009, 121, 2312.
-
(2009)
Angew. Chem.
, vol.121
, pp. 2312
-
-
-
67
-
-
85099674694
-
-
A highly reproducible result was also obtained using a preheated (80 °C, 1 h) mixture of [Rh(OH)(cod)], (5 mol %), P(, n, Bu), (10 mol %)KOAc (20 mol %) in CPME, indicating that using an excessive amount of the ligand is avoidable (Supporting Information, Scheme S1)
-
3 (10 mol %), and KOAc (20 mol %) in CPME, indicating that using an excessive amount of the ligand is avoidable (Supporting Information, Scheme S1).
-
-
-
-
69
-
-
85012853316
-
-
Angew. Chem. 2014, 126, 9465.
-
(2014)
Angew. Chem.
, vol.126
, pp. 9465
-
-
-
70
-
-
85043961233
-
-
Borylation of thioester 2 ao bearing a phenyl ester moiety did not afford 3 ao, and instead, S-ethyl 4-borylbenzoate 2 o (27 %) and diborylbenzene 3 o (34 %) were obtained (Supporting Information, Scheme S3), indicating that the phenyl ester moiety is more reactive than the thioester moiety under these conditions
-
Borylation of thioester 2 ao bearing a phenyl ester moiety did not afford 3 ao, and instead, S-ethyl 4-borylbenzoate 2 o (27 %) and diborylbenzene 3 o (34 %) were obtained (Supporting Information, Scheme S3), indicating that the phenyl ester moiety is more reactive than the thioester moiety under these conditions.
-
-
-
-
72
-
-
85043860969
-
-
For selected reviews, se
-
For selected reviews, see:
-
-
-
-
73
-
-
84867360608
-
-
X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010;
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 6010
-
-
Feng, X.1
Ding, X.2
Jiang, D.3
-
75
-
-
84949972648
-
-
P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053.
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 3053
-
-
Waller, P.J.1
Gándara, F.2
Yaghi, O.M.3
-
76
-
-
84937705228
-
-
For a review on decarboxylative functionalization of cinnamic acid derivatives, se
-
For a review on decarboxylative functionalization of cinnamic acid derivatives, see: A. J. Borah, G. Yan, Org. Biomol. Chem. 2015, 13, 8094.
-
(2015)
Org. Biomol. Chem.
, vol.13
, pp. 8094
-
-
Borah, A.J.1
Yan, G.2
-
77
-
-
0037042235
-
-
Transmetalation of both hydroxyrhodium(I) and alkylthiorhodium(I) with 4 a occurred smoothly even without using a base. For transmetalation of hydroxyrhodium(I) with arylboronic acids, see, For transmetalation of alkylthiorhodium(I) with 4 a, see Ref [10a]
-
Transmetalation of both hydroxyrhodium(I) and alkylthiorhodium(I) with 4 a occurred smoothly even without using a base. For transmetalation of hydroxyrhodium(I) with arylboronic acids, see: T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 2002, 124, 5052. For transmetalation of alkylthiorhodium(I) with 4 a, see Ref [10a].
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 5052
-
-
Hayashi, T.1
Takahashi, M.2
Takaya, Y.3
Ogasawara, M.4
-
78
-
-
85043852828
-
-
We have detected carbon monoxide in the gas phase of the reaction vial using a gas detector tube. See the Supporting Information for details
-
We have detected carbon monoxide in the gas phase of the reaction vial using a gas detector tube. See the Supporting Information for details.
-
-
-
-
79
-
-
85043923986
-
-
At this stage, we cannot exclude the possibility that the reaction begins with oxidative addition of thioester 2 to the rhodium center, followed by transmetalation with diboron 4 a to afford V. For preliminary mechanistic studies, see the Supporting Information (Scheme S4 and Figure S1).
-
At this stage, we cannot exclude the possibility that the reaction begins with oxidative addition of thioester 2 to the rhodium center, followed by transmetalation with diboron 4 a to afford V. For preliminary mechanistic studies, see the Supporting Information (Scheme S4 and Figure S1).
-
-
-
-
80
-
-
85051890664
-
-
Decarbonylation of carbonyl compounds such as aldehydes typically requires more than equimolar amounts of rhodium complex because of deactivation of the complex by coordination of carbon monoxide to the rhodium center. The reaction at a temperature higher than 180 °C enabled decarbonylation with a catalytic amount of the rhodium complex. See: Refs [13b] and [13c]
-
Decarbonylation of carbonyl compounds such as aldehydes typically requires more than equimolar amounts of rhodium complex because of deactivation of the complex by coordination of carbon monoxide to the rhodium center. The reaction at a temperature higher than 180 °C enabled decarbonylation with a catalytic amount of the rhodium complex. See: Refs [13b] and [13c].
-
-
-
-
81
-
-
85043909526
-
-
The borylation of 2 a using [Rh(OAc)(cod)], instead of [Rh(OH)(cod)], without KOAc gave 3 a in 24 % yield (Supporting Information, Table S3, entry 5). This result implies that the acetate bound to the rhodium center was trapped as pinB-OAc after the transmetalation step (Scheme 2 A III, (X=OAc) + 4 a to IV)thus, the acetate could no longer participate in the reaction. Therefore, we believe that the transmetalation occurs not from rhodium(I) acetate but from rhodium(I) thiolateadditional KOAc does not participate in transmetalation as a base
-
2 without KOAc gave 3 a in 24 % yield (Supporting Information, Table S3, entry 5). This result implies that the acetate bound to the rhodium center was trapped as pinB-OAc after the transmetalation step (Scheme 2 A III, (X=OAc) + 4 a to IV), and thus, the acetate could no longer participate in the reaction. Therefore, we believe that the transmetalation occurs not from rhodium(I) acetate but from rhodium(I) thiolate, and additional KOAc does not participate in transmetalation as a base.
-
-
-
-
82
-
-
85099675187
-
-
P NMR analysis of the reaction mixture for the borylation of 2 a without addition of KOAc (Table 1, entry 8) after heating for 24 h at 80 °C showed a major doublet signal at, =8.3 ppm (, J, =108 Hz) as a single Rh-phosphine complex. Further study to characterize this species is currently underway
-
P-Rh=108 Hz) as a single Rh-phosphine complex. Further study to characterize this species is currently underway.
-
-
-
-
83
-
-
85043878657
-
-
For selected reviews, se
-
For selected reviews, see:
-
-
-
-
85
-
-
84863446276
-
-
K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788;
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 788
-
-
Engle, K.M.1
Mei, T.-S.2
Wasa, M.3
Yu, J.-Q.4
|