-
1
-
-
4043112177
-
Sustainable hydrogen production
-
Turner J A 2004 Sustainable hydrogen production Science 305 972-4
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
2
-
-
0037332970
-
The hydrogen economy in the 21st century: A sustainable development scenario
-
Barreto L, Makihira A and Riahi K 2003 The hydrogen economy in the 21st century: a sustainable development scenario Int. J. Hydrogen Energy 28 267-84
-
(2003)
Int. J. Hydrogen Energy
, vol.28
, pp. 267-284
-
-
Barreto, L.1
Makihira, A.2
Riahi, K.3
-
3
-
-
84995543491
-
Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes
-
Chen Y, Feng X, Liu M, Su J and Shen S H 2016 Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes Nanophotonics 5 468-91
-
(2016)
Nanophotonics
, vol.5
, pp. 468-491
-
-
Chen, Y.1
Feng, X.2
Liu, M.3
Su, J.4
Shen, S.H.5
-
4
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
Chen X B, Shen S H, Guo L J and Mao S S 2010 Semiconductor-based photocatalytic hydrogen generation Chem. Rev. 110 6503-70
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.B.1
Shen, S.H.2
Guo, L.J.3
Mao, S.S.4
-
5
-
-
84959266669
-
Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production
-
Chang K, Hai X and Ye J 2016 Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production Adv. Energy Mater. 6 1502555
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Chang, K.1
Hai, X.2
Ye, J.3
-
6
-
-
84907899778
-
Enabling silicon for solar-fuel production
-
Sun K, Shen S H, Liang Y Q, Burrows P E, Mao S S and Wang D L 2014 Enabling silicon for solar-fuel production Chem. Rev. 114 8662-719
-
(2014)
Chem. Rev.
, vol.114
, pp. 8662-8719
-
-
Sun, K.1
Shen, S.H.2
Liang, Y.Q.3
Burrows, P.E.4
Mao, S.S.5
Wang, D.L.6
-
7
-
-
77954249378
-
Hydrogen generation from photoelectrochemical water splitting based on nanomaterials
-
Li Y and Zhang J Z 2010 Hydrogen generation from photoelectrochemical water splitting based on nanomaterials Laser Photon. Rev. 4 517-28
-
(2010)
Laser Photon. Rev.
, vol.4
, pp. 517-528
-
-
Li, Y.1
Zhang, J.Z.2
-
8
-
-
84923878992
-
Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review
-
Li J T and Wu N Q 2015 Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review Catal. Sci. Technol. 5 1360-84
-
(2015)
Catal. Sci. Technol.
, vol.5
, pp. 1360-1384
-
-
Li, J.T.1
Wu, N.Q.2
-
9
-
-
79951513799
-
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
-
Chen X B, Liu L, Peter Y Y and Mao S S 2011 Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals Science 331 746-50
-
(2011)
Science
, vol.331
, pp. 746-750
-
-
Chen, X.B.1
Liu, L.2
Peter, Y.Y.3
Mao, S.S.4
-
11
-
-
84907895193
-
TiO2 nanoparticles as functional building blocks
-
Sang L, Zhao Y and Burda C 2014 TiO2 nanoparticles as functional building blocks Chem. Rev. 114 9283-318
-
(2014)
Chem. Rev.
, vol.114
, pp. 9283-9318
-
-
Sang, L.1
Zhao, Y.2
Burda, C.3
-
12
-
-
80051503962
-
Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production
-
Mukherji A, Seger B, Lu G Q and Wang L 2011 Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production ACS Nano 5 3483-92
-
(2011)
ACS Nano
, vol.5
, pp. 3483-3492
-
-
Mukherji, A.1
Seger, B.2
Lu, G.Q.3
Wang, L.4
-
13
-
-
85013791643
-
Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst
-
Liu M, Chen Y, Su J, Shi J, Wang X and Guo L 2016 Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst Nat. Energy 1 16151
-
(2016)
Nat. Energy
, vol.1
-
-
Liu, M.1
Chen, Y.2
Su, J.3
Shi, J.4
Wang, X.5
Guo, L.6
-
14
-
-
84855708564
-
Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping
-
Peng S, An R, Li Y, Lu G and Li S 2012 Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping Int. J. Hydrogen Energy 37 1366-74
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 1366-1374
-
-
Peng, S.1
An, R.2
Li, Y.3
Lu, G.4
Li, S.5
-
15
-
-
84888361147
-
One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: Tunable morphology and efficient photocatalytic hydrogen production
-
Yang G, Yan W, Zhang Q, Shen S and Ding S 2013 One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production Nanoscale 5 12432-9
-
(2013)
Nanoscale
, vol.5
, pp. 12432-12439
-
-
Yang, G.1
Yan, W.2
Zhang, Q.3
Shen, S.4
Ding, S.5
-
16
-
-
84883159260
-
Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review
-
Wang Y, Wang Q, Zhan X, Wang F, Safdar M and He J 2013 Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review Nanoscale 5 8326-39
-
(2013)
Nanoscale
, vol.5
, pp. 8326-8339
-
-
Wang, Y.1
Wang, Q.2
Zhan, X.3
Wang, F.4
Safdar, M.5
He, J.6
-
17
-
-
84924267916
-
C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution
-
Lian Z, Xu P, Wang W, Zhang D, Xiao S, Li X and Li G 2015 C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution ACS Appl. Mater. Inter. 7 4533-40
-
(2015)
ACS Appl. Mater. Inter.
, vol.7
, pp. 4533-4540
-
-
Lian, Z.1
Xu, P.2
Wang, W.3
Zhang, D.4
Xiao, S.5
Li, X.6
Li, G.7
-
18
-
-
84896539353
-
Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination
-
Long L, Yu X, Wu L, Li J and Li X 2013 Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination Nanotechnology 25 035603
-
(2013)
Nanotechnology
, vol.25
-
-
Long, L.1
Yu, X.2
Wu, L.3
Li, J.4
Li, X.5
-
19
-
-
84929076007
-
Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy
-
He W, Yang Y, Wang L, Yang J, Xiang X, Yan D and Li F 2015 Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy ChemSusChem 8 1568-76
-
(2015)
ChemSusChem
, vol.8
, pp. 1568-1576
-
-
He, W.1
Yang, Y.2
Wang, L.3
Yang, J.4
Xiang, X.5
Yan, D.6
Li, F.7
-
20
-
-
79955927165
-
Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting
-
Su J, Guo L, Bao N and Grimes C A 2011 Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting Nano Lett. 11 1928-33
-
(2011)
Nano Lett.
, vol.11
, pp. 1928-1933
-
-
Su, J.1
Guo, L.2
Bao, N.3
Grimes, C.A.4
-
21
-
-
84894148262
-
Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation
-
Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P and Zheng X 2014 Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation Nano Lett. 14 1099-105
-
(2014)
Nano Lett.
, vol.14
, pp. 1099-1105
-
-
Rao, P.M.1
Cai, L.2
Liu, C.3
Cho, I.S.4
Lee, C.H.5
Weisse, J.M.6
Yang, P.7
Zheng, X.8
-
22
-
-
84940093683
-
Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls
-
He W, Wang R, Zhang L, Zhu J, Xiang X and Li F 2015 Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls J. Mater. Chem. A 3 17977-82
-
(2015)
J. Mater. Chem.
, vol.3
, pp. 17977-17982
-
-
He, W.1
Wang, R.2
Zhang, L.3
Zhu, J.4
Xiang, X.5
Li, F.6
-
23
-
-
84982683393
-
Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes
-
Tang Y, Wang R, Yang Y, Yan D and Xiang X 2016 Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes ACS Appl. Mater. Interfaces 8 19446-55
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 19446-19455
-
-
Tang, Y.1
Wang, R.2
Yang, Y.3
Yan, D.4
Xiang, X.5
-
24
-
-
78650815246
-
Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures
-
Lo S S, Mirkovic T, Chuang C H, Burda C and Scholes G D 2011 Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures Adv. Mater. 23 180-97
-
(2011)
Adv. Mater.
, vol.23
, pp. 180-197
-
-
Lo, S.S.1
Mirkovic, T.2
Chuang, C.H.3
Burda, C.4
Scholes, G.D.5
-
25
-
-
84872740649
-
Electron transfer dynamics in semiconductor-chromophore-polyoxometalate catalyst photoanodes
-
Xiang X, Fielden J, Rodríguez-Córdoba W, Huang Z, Zhang N, Luo Z, Musaev D G, Lian T and Hill C L 2013 Electron transfer dynamics in semiconductor-chromophore-polyoxometalate catalyst photoanodes J. Phys. Chem. C 117 918-26
-
(2013)
J. Phys. Chem.
, vol.117
, pp. 918-926
-
-
Xiang, X.1
Fielden, J.2
Rodríguez-Córdoba, W.3
Huang, Z.4
Zhang, N.5
Luo, Z.6
Musaev, D.G.7
Lian, T.8
Hill, C.L.9
-
26
-
-
79961067404
-
Measuring electron and hole transfer in core/shell nanoheterostructures
-
Chuang C H, Doane T L, Lo S S, Scholes G D and Burda C 2011 Measuring electron and hole transfer in core/shell nanoheterostructures ACS Nano 5 6016-24
-
(2011)
ACS Nano
, vol.5
, pp. 6016-6024
-
-
Chuang, C.H.1
Doane, T.L.2
Lo, S.S.3
Scholes, G.D.4
Burda, C.5
-
27
-
-
84946746822
-
Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets
-
Zhukovskyi M, Tongying P, Yashan H, Wang Y and Kuno M 2015 Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets ACS Catal. 5 6615-23
-
(2015)
ACS Catal.
, vol.5
, pp. 6615-6623
-
-
Zhukovskyi, M.1
Tongying, P.2
Yashan, H.3
Wang, Y.4
Kuno, M.5
-
28
-
-
84870667497
-
Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst
-
Han Z, Qiu F, Eisenberg R, Holland P L and Krauss T D 2012 Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst Science 338 1321-4
-
(2012)
Science
, vol.338
, pp. 1321-1324
-
-
Han, Z.1
Qiu, F.2
Eisenberg, R.3
Holland, P.L.4
Krauss, T.D.5
-
29
-
-
84925359874
-
Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets
-
Zhang G, Lin B, Qiu Y, He L, Chen Y and Gao B 2015 Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets Int. J. Hydrogen Energy 40 4758-65
-
(2015)
Int. J. Hydrogen Energy
, vol.40
, pp. 4758-4765
-
-
Zhang, G.1
Lin, B.2
Qiu, Y.3
He, L.4
Chen, Y.5
Gao, B.6
-
30
-
-
84878310936
-
Quantum confinement controls photocatalysis: A free energy analysis for photocatalytic proton reduction at CdSe nanocrystals
-
Zhao J, Holmes M A and Osterloh F E 2013 Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals ACS Nano 7 4316-25
-
(2013)
ACS Nano
, vol.7
, pp. 4316-4325
-
-
Zhao, J.1
Holmes, M.A.2
Osterloh, F.E.3
-
31
-
-
84886674290
-
Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting
-
Miao J, Yang H B, Khoo S Y and Liu B 2013 Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting Nanoscale 5 11118-24
-
(2013)
Nanoscale
, vol.5
, pp. 11118-11124
-
-
Miao, J.1
Yang, H.B.2
Khoo, S.Y.3
Liu, B.4
-
32
-
-
76749158974
-
Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation
-
Hensel J, Wang G, Li Y and Zhang J Z 2010 Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation Nano Lett. 10 478-83
-
(2010)
Nano Lett.
, vol.10
, pp. 478-483
-
-
Hensel, J.1
Wang, G.2
Li, Y.3
Zhang, J.Z.4
-
33
-
-
0035835074
-
Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor
-
Peng Z A and Peng X 2001 Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor J. Am. Chem. Soc. 123 183-4
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 183-184
-
-
Peng, Z.A.1
Peng, X.2
-
34
-
-
0003000624
-
Back electron transfer from TiO2 nanoparticles to FeIII(CN)6 3-: Origin of non-single-exponential and particle size independent dynamics
-
Weng Y X, Wang Y Q, Asbury J B, Ghosh H N and Lian T 2000 Back electron transfer from TiO2 nanoparticles to FeIII(CN)6 3-: origin of non-single-exponential and particle size independent dynamics J. Phys. Chem. B 104 93-104
-
(2000)
J. Phys. Chem.
, vol.104
, pp. 93-104
-
-
Weng, Y.X.1
Wang, Y.Q.2
Asbury, J.B.3
Ghosh, H.N.4
Lian, T.5
-
35
-
-
33644535769
-
Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films
-
Robel I, Subramanian V, Kuno M and Kamat P V 2006 Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films J. Am. Chem. Soc. 128 2385-93
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 2385-2393
-
-
Robel, I.1
Subramanian, V.2
Kuno, M.3
Kamat, P.V.4
-
36
-
-
84944111734
-
Colloidal dual-band gap cell for photocatalytic hydrogen generation
-
Li W, O'Dowd G, Whittles T J, Hesp D, Gründer Y, Dhanak V R and Jäckel F 2015 Colloidal dual-band gap cell for photocatalytic hydrogen generation Nanoscale 7 16606-10
-
(2015)
Nanoscale
, vol.7
, pp. 16606-16610
-
-
Li, W.1
O'Dowd, G.2
Whittles, T.J.3
Hesp, D.4
Gründer, Y.5
Dhanak, V.R.6
Jäckel, F.7
-
37
-
-
74549189638
-
Titania-based photocatalysts - Crystal growth, doping and heterostructuring
-
Liu G, Wang L, Yang H G, Cheng H M and Lu G Q 2010 Titania-based photocatalysts - crystal growth, doping and heterostructuring J. Mater. Chem. 20 831-43
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 831-843
-
-
Liu, G.1
Wang, L.2
Yang, H.G.3
Cheng, H.M.4
Lu, G.Q.5
-
38
-
-
25444495292
-
A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis
-
Deng Z, Cao L, Tang F and Zou B 2005 A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis J. Phys. Chem. B 109 16671-5
-
(2005)
J. Phys. Chem.
, vol.109
, pp. 16671-16675
-
-
Deng, Z.1
Cao, L.2
Tang, F.3
Zou, B.4
-
39
-
-
65549122140
-
Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate
-
Wu Y, Long M, Cai W, Dai S, Chen C, Wu D and Bai J 2009 Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate Nanotechnology 20 185703
-
(2009)
Nanotechnology
, vol.20
, Issue.18
-
-
Wu, Y.1
Long, M.2
Cai, W.3
Dai, S.4
Chen, C.5
Wu, D.6
Bai, J.7
-
40
-
-
70350662752
-
TiO2-based nanotubes modified with nickel: Synthesis, properties, and improved photocatalytic activity
-
Qamar M, Kim S J and Ganguli A K 2009 TiO2-based nanotubes modified with nickel: synthesis, properties, and improved photocatalytic activity Nanotechnology 20 455703
-
(2009)
Nanotechnology
, vol.20
, Issue.45
-
-
Qamar, M.1
Kim, S.J.2
Ganguli, A.K.3
-
41
-
-
84855905257
-
PH-dependent network formation of quantum dots and fluorescent quenching by Au nanoparticle embedding
-
Sekiguchi S, Niikura K, Iyo N, Matsuo Y, Eguchi A, Nakabayashi T, Ohta N and Ijiro K 2011 pH-dependent network formation of quantum dots and fluorescent quenching by Au nanoparticle embedding ACS Appl. Mater. Inter. 3 4169-73
-
(2011)
ACS Appl. Mater. Inter.
, vol.3
, pp. 4169-4173
-
-
Sekiguchi, S.1
Niikura, K.2
Iyo, N.3
Matsuo, Y.4
Eguchi, A.5
Nakabayashi, T.6
Ohta, N.7
Ijiro, K.8
-
42
-
-
33750801077
-
Energy shift of photoemission spectra for organics-passivated CdSe nanoparticles: The final-state effect
-
Wu P J, Tsuei K D, Wei K H and Liang K S 2007 Energy shift of photoemission spectra for organics-passivated CdSe nanoparticles: the final-state effect Solid State Commun. 141 6-11
-
(2007)
Solid State Commun.
, vol.141
, pp. 6-11
-
-
Wu, P.J.1
Tsuei, K.D.2
Wei, K.H.3
Liang, K.S.4
-
43
-
-
33748770596
-
Semiconductor 'nano-onions' with multifold alternating CdS/CdSe or CdSe/CdS structure
-
Pan D, Wang Q, Pang J, Jiang S, Ji X and An L 2006 Semiconductor 'nano-onions' with multifold alternating CdS/CdSe or CdSe/CdS structure Chem. Mater. 18 4253-8
-
(2006)
Chem. Mater.
, vol.18
, pp. 4253-4258
-
-
Pan, D.1
Wang, Q.2
Pang, J.3
Jiang, S.4
Ji, X.5
An, L.6
-
44
-
-
0040405296
-
X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface
-
Katari J B, Colvin V L and Alivisatos A P 1994 X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface J. Phys. Chem. 98 4109-17
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 4109-4117
-
-
Katari, J.B.1
Colvin, V.L.2
Alivisatos, A.P.3
-
45
-
-
23144443063
-
Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM
-
Song Z, Hrbek J and Osgood R 2005 Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM Nano Lett. 5 1327-32
-
(2005)
Nano Lett.
, vol.5
, pp. 1327-1332
-
-
Song, Z.1
Hrbek, J.2
Osgood, R.3
-
46
-
-
84997817356
-
General applicability of nanocrystalline Ni2P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation
-
Chen Y and Qin Z 2016 General applicability of nanocrystalline Ni2P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation Catal. Sci. Technol. 6 8212-21
-
(2016)
Catal. Sci. Technol.
, vol.6
, pp. 8212-8221
-
-
Chen, Y.1
Qin, Z.2
-
47
-
-
34748812589
-
Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: Synthesis, characterization, and tested for antibacterial outcome
-
Guin D, Manorama S V, Latha J N and Singh S 2007 Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome J. Phys. Chem. C 111 13393-7
-
(2007)
J. Phys. Chem.
, vol.111
, pp. 13393-13397
-
-
Guin, D.1
Manorama, S.V.2
Latha, J.N.3
Singh, S.4
-
48
-
-
84923330638
-
Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
-
Li L, Yan J, Wang T, Zhao Z J, Zhang J, Gong J and Guan N 2015 Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production Nat. Commun. 6 5881
-
(2015)
Nat. Commun.
, vol.6
, pp. 5881
-
-
Li, L.1
Yan, J.2
Wang, T.3
Zhao, Z.J.4
Zhang, J.5
Gong, J.6
Guan, N.7
-
49
-
-
84985897922
-
Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: A strategy for manipulating the junction structure
-
Wang X, Liu M, Chen Y, Fu W, Wang B and Guo L 2016 Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: a strategy for manipulating the junction structure Nanoscale 8 15970-7
-
(2016)
Nanoscale
, vol.8
, pp. 15970-15977
-
-
Wang, X.1
Liu, M.2
Chen, Y.3
Fu, W.4
Wang, B.5
Guo, L.6
-
50
-
-
41149181243
-
Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture
-
Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture J. Am. Chem. Soc. 130 4007-15
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 4007-4015
-
-
Kongkanand, A.1
Tvrdy, K.2
Takechi, K.3
Kuno, M.4
Kamat, P.V.5
-
51
-
-
84992183816
-
In situ synthesis and visible-light photocatalytic application of CdTeSe@TiO2 nanotube composites with high electron transfer rate
-
Han Z, Ren L, Luo M, Chen L, Pan H, Li C, Chen J and Lan J 2016 In situ synthesis and visible-light photocatalytic application of CdTeSe@TiO2 nanotube composites with high electron transfer rate J. Mol. Catal. A 425 229-36
-
(2016)
J. Mol. Catal.
, vol.425
, pp. 229-236
-
-
Han, Z.1
Ren, L.2
Luo, M.3
Chen, L.4
Pan, H.5
Li, C.6
Chen, J.7
Lan, J.8
|