메뉴 건너뛰기




Volumn 27, Issue 5, 2016, Pages 1191-1206

HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens

Author keywords

Air pollution; Ensembles learning; Ensembles of classifiers; Feedforward neural network; Fuzzy inference systems; Random forest

Indexed keywords

AIR POLLUTION; AIR QUALITY; ARTIFICIAL INTELLIGENCE; DECISION TREES; FEEDFORWARD NEURAL NETWORKS; FORECASTING; FUZZY INFERENCE; FUZZY SYSTEMS; HYBRID SYSTEMS; INTELLIGENT SYSTEMS; LEARNING SYSTEMS; PATIENT MONITORING; POLLUTION;

EID: 85013924468     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-015-1927-7     Document Type: Article
Times cited : (49)

References (27)
  • 1
    • 84906537551 scopus 로고    scopus 로고
    • Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the Case of Athens
    • Bougoudis I, Iliadis L, Papaleonidas A (2014) Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the Case of Athens. Eng Appl Neural Netw Commun Comput Inf Sci 459(2014):1–14
    • (2014) Eng Appl Neural Netw Commun Comput Inf Sci , vol.459 , Issue.2014 , pp. 1-14
    • Bougoudis, I.1    Iliadis, L.2    Papaleonidas, A.3
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. doi:10.1023/A:1010933404324
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 19544377320 scopus 로고    scopus 로고
    • A neural network forecast for daily average PM10 concentrations in Belgium
    • Hooyberghs J, Mensink C, Dumont G, Fierens F, Brasseur O (2005) A neural network forecast for daily average PM10 concentrations in Belgium. Atmos Environ 39(18):3279–3289
    • (2005) Atmos Environ , vol.39 , Issue.18 , pp. 3279-3289
    • Hooyberghs, J.1    Mensink, C.2    Dumont, G.3    Fierens, F.4    Brasseur, O.5
  • 5
    • 85013922190 scopus 로고    scopus 로고
    • Intelligent information systems and applications in risk estimation. Stamoulis publication, Thessaloniki
    • Iliadis L (2007) Intelligent information systems and applications in risk estimation. Stamoulis publication, Thessaloniki. ISBN: 978-960-6741-33-3 A
    • (2007) ISBN: 978-960-6741-33-3 A
    • Iliadis, L.1
  • 6
    • 85017022437 scopus 로고    scopus 로고
    • Artificial neural network prediction of tropospheric ozone concentrations in Istanbul, Turkey
    • Inal F (2010) Artificial neural network prediction of tropospheric ozone concentrations in Istanbul, Turkey. CLEAN Soil Air Water 38(10):897–908
    • (2010) CLEAN Soil Air Water , vol.38 , Issue.10 , pp. 897-908
    • Inal, F.1
  • 8
    • 84892163301 scopus 로고    scopus 로고
    • Neural network ensembles for online gas concentration estimation using an electronic nose
    • Kadri C, Tian F, Zhang L, Dang L, Li G (2013) Neural network ensembles for online gas concentration estimation using an electronic nose. Int J Comput Sci 10(2):1
    • (2013) Int J Comput Sci , vol.10 , Issue.2 , pp. 1
    • Kadri, C.1    Tian, F.2    Zhang, L.3    Dang, L.4    Li, G.5
  • 9
    • 84865146329 scopus 로고    scopus 로고
    • Wan F (2012) Applying ensemble learning techniques to ANFIS for air pollution index prediction in Macau. ISNN
    • Lei KS, Wan F (2012) Applying ensemble learning techniques to ANFIS for air pollution index prediction in Macau. ISNN 2012, Part I, LNCS 7367. pp 509–516
    • (2012) Part I, LNCS , vol.7367 , pp. 509-516
    • Lei, K.S.1
  • 11
    • 84883717859 scopus 로고    scopus 로고
    • Identifying pollution sources and predicting urban air quality using ensemble learning methods
    • Singha KP, Guptaa S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437
    • (2013) Atmos Environ , vol.80 , pp. 426-437
    • Singha, K.P.1    Guptaa, S.2    Rai, P.3
  • 12
    • 58149270748 scopus 로고    scopus 로고
    • A method for creating ensemble neural networks using a sampling data approach. Theor Adv Appl Fuzzy Log ASC42 pp. 772–780
    • Lopez M, Melin P, Castillo O (2007) A method for creating ensemble neural networks using a sampling data approach. Theor Adv Appl Fuzzy Log ASC42 pp. 772–780, Springer
    • (2007) Springer
    • Lopez, M.1    Melin, P.2    Castillo, O.3
  • 13
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Maclin R, Opitz D (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Maclin, R.1    Opitz, D.2
  • 14
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13
    • (1975) Int J Man Mach Stud , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 15
    • 85013893220 scopus 로고
    • Application of fuzzy algorithms for the control of a simple dynamic plant. In: Proceedings of IEEE
    • Mamdani EH (1974) Application of fuzzy algorithms for the control of a simple dynamic plant. In: Proceedings of IEEE, pp 121–159
    • (1974) pp 121–159
    • Mamdani, E.H.1
  • 17
    • 38149102312 scopus 로고    scopus 로고
    • Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks
    • Ozcan HK, Bilgili E, Sahin U, Bayat C (2007) Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks. Adv Atmos Sci Springer 24(5):907–914
    • (2007) Adv Atmos Sci Springer , vol.24 , Issue.5 , pp. 907-914
    • Ozcan, H.K.1    Bilgili, E.2    Sahin, U.3    Bayat, C.4
  • 20
    • 85013981329 scopus 로고    scopus 로고
    • Neural modeling of the tropospheric ozone concentrations in an urban site. In: 10th ICEANN
    • Paschalidou A, Iliadis L, Kassomenos P, Bezirtzoglou C (2007) Neural modeling of the tropospheric ozone concentrations in an urban site. In: 10th ICEANN, pp 436–445
    • (2007) pp 436–445
    • Paschalidou, A.1    Iliadis, L.2    Kassomenos, P.3    Bezirtzoglou, C.4
  • 21
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42(35):8331–8340
    • (2008) Atmos Environ , vol.42 , Issue.35 , pp. 8331-8340
    • Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 22
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1–2):1–39. doi:10.1007/s10462-009-9124-7
    • (2010) Artif Intell Rev , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 23
    • 84901304437 scopus 로고    scopus 로고
    • Prediction of particulate matter concentrations using artificial neural network
    • Roy S (2012) Prediction of particulate matter concentrations using artificial neural network. Resour Environ 2(2):30–36. doi:10.5923/j.re.20120202.05
    • (2012) Resour Environ , vol.2 , Issue.2 , pp. 30-36
    • Roy, S.1
  • 24
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi Τ, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1):116–133
    • (1985) IEEE Trans Syst Man Cybern , vol.SMC-15 , Issue.1 , pp. 116-133
    • Takagi, T.1    Sugeno, M.2
  • 25
    • 0036224943 scopus 로고    scopus 로고
    • Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks
    • Wahab A-SA, Al-Alawi SM (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. EM & Softw 17:219–228
    • (2002) EM & Softw , vol.17 , pp. 219-228
    • Wahab, A.-S.A.1    Al-Alawi, S.M.2
  • 26
    • 85013959297 scopus 로고    scopus 로고
    • www.cs.waikato.ac.nz/ml/weka/
  • 27
    • 78049263888 scopus 로고    scopus 로고
    • Corrigendum to “Ensembling neural networks: many could be better than all
    • Zhou ZH, Wu J, Wei T (2010) Corrigendum to “Ensembling neural networks: many could be better than all”. Artif Intell 174(18):1570
    • (2010) Artif Intell , vol.174 , Issue.18 , pp. 1570
    • Zhou, Z.H.1    Wu, J.2    Wei, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.