메뉴 건너뛰기




Volumn 37, Issue 24, 2003, Pages 3435-3443

Maximum likelihood cost functions for neural network models of air quality data

Author keywords

Modelling exceedences; Neural network; Ozone

Indexed keywords

COST EFFECTIVENESS; FORECASTING; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 0038724560     PISSN: 13522310     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1352-2310(03)00323-6     Document Type: Article
Times cited : (58)

References (22)
  • 1
    • 0033164667 scopus 로고    scopus 로고
    • Comparing classifiers when the misallocation costs are uncertain
    • Adams N.M., Hand D.J. Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition. 32:1999;1139-1147.
    • (1999) Pattern Recognition , vol.32 , pp. 1139-1147
    • Adams, N.M.1    Hand, D.J.2
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. Petrov, & F. Csaki. Armenia, USSR: Tsahkadsov
    • Akaike H. Information theory and an extension of the maximum likelihood principle. Petrov B., Csaki F. 2nd International Symposium on Information Theory. 1973;267-281 Tsahkadsov, Armenia, USSR.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 4
    • 0031191630 scopus 로고    scopus 로고
    • The use of the Area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the Area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition. 30(7):1997;1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural network and regression models for ozone forecasting
    • Comrie A.C. Comparing neural network and regression models for ozone forecasting. Journal of the Air and Waste Management Association. 47:1997;653-663.
    • (1997) Journal of the Air and Waste Management Association , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 7
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences
    • Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment. 32(14/15):1998;2627-2636.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 9
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behaviour
    • Gardner M.W., Dorling S.R. Statistical surface ozone models. an improved methodology to account for non-linear behaviour Atmospheric Environment. 34(1):1999;21-34.
    • (1999) Atmospheric Environment , vol.34 , Issue.1 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 10
    • 2942546552 scopus 로고    scopus 로고
    • Air pollution episodes: modelling tools for improved smog management (APPETISE)
    • New Hall, Cambridge University, UK
    • Grieg, A.J.E., 2000. Air pollution episodes: modelling tools for improved smog management (APPETISE). In: Proceedings of the Eighth International Conference on Air Pollution, New Hall, Cambridge University, UK, pp. 89-98.
    • (2000) Proceedings of the Eighth International Conference on Air Pollution , pp. 89-98
    • Grieg, A.J.E.1
  • 11
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: optimal brain surgeon
    • Hanson, S., Cowan, J., Giles, C., (Eds.). Morgan Kaufmann, San Mateo, CA
    • Hassibi, B., Stork, D.G., 1993. Second order derivatives for network pruning: optimal brain surgeon. In: Hanson, S., Cowan, J., Giles, C., (Eds.), Advances in Neural Information Processing Systems, Vol. 5. Morgan Kaufmann, San Mateo, CA, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 12
    • 0001041635 scopus 로고
    • Learning algorithms and probability distributions in feed-forward and feed-back networks
    • Hopfield J.J. Learning algorithms and probability distributions in feed-forward and feed-back networks. Proceedings of the National Academy of Sciences. 84:1987;8429-8433.
    • (1987) Proceedings of the National Academy of Sciences , vol.84 , pp. 8429-8433
    • Hopfield, J.J.1
  • 13
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • McNemar I. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12:1947;153-157.
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • McNemar, I.1
  • 15
    • 85153950631 scopus 로고
    • Learning local error bars for nonlinear regression
    • Tesauro, G., Touretzky, D., Leen, T. (Eds.), MIT Press, Cambridge MA
    • Nix, D.A., Weigand, A.S., 1995. Learning local error bars for nonlinear regression. In: Tesauro, G., Touretzky, D., Leen, T. (Eds.), Advances in Neural Information Processing, Vol. 7, MIT Press, Cambridge MA, pp. 489-496.
    • (1995) Advances in Neural Information Processing , vol.7 , pp. 489-496
    • Nix, D.A.1    Weigand, A.S.2
  • 16
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time-series of atmospheric pollution data
    • Nunnari G., Nucifora A.F.M., Randieri C. The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecological Modelling. 111:1998;187-205.
    • (1998) Ecological Modelling , vol.111 , pp. 187-205
    • Nunnari, G.1    Nucifora, A.F.M.2    Randieri, C.3
  • 17
    • 0038227172 scopus 로고    scopus 로고
    • Personal communication
    • Schlink, U., 2001. Personal communication.
    • (2001)
    • Schlink, U.1
  • 19
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, B. 36(1):1974;111-147.
    • (1974) Journal of the Royal Statistical Society, B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 21
    • 0000673452 scopus 로고
    • Bayesian regularisation and pruning using a Laplace prior
    • Williams P.M. Bayesian regularisation and pruning using a Laplace prior. Neural Computation. 7(1):1995;117-143.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 22
    • 0030585112 scopus 로고    scopus 로고
    • Using neural networks to model conditional multivariate densities
    • Williams P.M. Using neural networks to model conditional multivariate densities. Neural Computation. 8:1996;843-854.
    • (1996) Neural Computation , vol.8 , pp. 843-854
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.