메뉴 건너뛰기




Volumn 229, Issue , 2017, Pages 31-38

Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

Author keywords

direct electrochemistry; extracellular electron transfer; mesoporous carbon; microbial fuel cell; polyaniline

Indexed keywords

ANODES; CALCIUM CARBONATE; CARBONIZATION; ELECTROCHEMISTRY; ELECTRODES; ELECTRON TRANSITIONS; ELECTRONS; FUEL CELLS; MESOPOROUS MATERIALS; POLYANILINE;

EID: 85010818933     PISSN: 00134686     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.electacta.2017.01.081     Document Type: Article
Times cited : (72)

References (54)
  • 1
    • 33748564008 scopus 로고    scopus 로고
    • Microbial challenges and applications
    • [1] Logan, B.E., Regan, J.M., Microbial challenges and applications. Environ. Sci. Technol., 40, 2006, 5172.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5172
    • Logan, B.E.1    Regan, J.M.2
  • 2
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
    • [2] Du, Z., Li, H., Gu, T., A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25, 2007, 464.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 464
    • Du, Z.1    Li, H.2    Gu, T.3
  • 3
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • [3] Logan, B.E., Rabaey, K., Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337, 2012, 686.
    • (2012) Science , vol.337 , pp. 686
    • Logan, B.E.1    Rabaey, K.2
  • 4
    • 84881523863 scopus 로고    scopus 로고
    • Microbial fuel cell: technology for harvesting energy from biomass
    • [4] Kiran, V., Gaur, B., Microbial fuel cell: technology for harvesting energy from biomass. Rev. Chem. Eng., 29, 2013, 189.
    • (2013) Rev. Chem. Eng. , vol.29 , pp. 189
    • Kiran, V.1    Gaur, B.2
  • 5
    • 84888015677 scopus 로고    scopus 로고
    • A comprehensive review of microbial electrochemical systems as a platform technology
    • [5] Wang, H., Ren, Z.J., A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv., 31, 2013, 1796.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 1796
    • Wang, H.1    Ren, Z.J.2
  • 6
    • 84870820002 scopus 로고    scopus 로고
    • Bacterial extracellular electron transfer in bioelectrochemical systems
    • [6] Yang, Y., Xu, M., Guo, J., Sun, G., Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem, 47, 2012, 1707.
    • (2012) Process Biochem , vol.47 , pp. 1707
    • Yang, Y.1    Xu, M.2    Guo, J.3    Sun, G.4
  • 7
    • 84856242296 scopus 로고    scopus 로고
    • Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella
    • [7] Brutinel, E.D., Gralnick, J.A., Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl. Microbiol. Biotechnol., 93, 2012, 41.
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , pp. 41
    • Brutinel, E.D.1    Gralnick, J.A.2
  • 8
    • 41749102419 scopus 로고    scopus 로고
    • Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells
    • [8] Qiao, Y., Li, C.M., Bao, S.-J., Lu, Z., Hong, Y., Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun., 2008, 1290.
    • (2008) Chem. Commun. , pp. 1290
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Lu, Z.4    Hong, Y.5
  • 9
    • 77951943998 scopus 로고    scopus 로고
    • Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry
    • [9] Qiao, Y., Bao, S.-J., Li, C.M., Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy Environ. Sci., 3, 2010, 544.
    • (2010) Energy Environ. Sci. , vol.3 , pp. 544
    • Qiao, Y.1    Bao, S.-J.2    Li, C.M.3
  • 10
    • 84919343705 scopus 로고    scopus 로고
    • Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis
    • [10] Zou, L., Qiao, Y., Wu, X.-S., Ma, C.-X., Li, X., Li, C.M., Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis. J. Power Sources, 276, 2015, 208.
    • (2015) J. Power Sources , vol.276 , pp. 208
    • Zou, L.1    Qiao, Y.2    Wu, X.-S.3    Ma, C.-X.4    Li, X.5    Li, C.M.6
  • 11
    • 84959018051 scopus 로고    scopus 로고
    • Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells
    • [11] Zou, L., Qiao, Y., Wu, Z.-Y., Wu, X.-S., Xie, J.-L., Yu, S.-H., Guo, J., Li, C.M., Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv. Energy Mater., 6, 2016, 1501535.
    • (2016) Adv. Energy Mater. , vol.6 , pp. 1501535
    • Zou, L.1    Qiao, Y.2    Wu, Z.-Y.3    Wu, X.-S.4    Xie, J.-L.5    Yu, S.-H.6    Guo, J.7    Li, C.M.8
  • 13
    • 84875122181 scopus 로고    scopus 로고
    • Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells
    • [13] Kumar, G.G., Sarathi, V.G.S., Nahm, K.S., Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron., 43, 2013, 461.
    • (2013) Biosens. Bioelectron. , vol.43 , pp. 461
    • Kumar, G.G.1    Sarathi, V.G.S.2    Nahm, K.S.3
  • 14
    • 84961120924 scopus 로고    scopus 로고
    • Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell
    • [14] Han, T.H., Sawant, S.Y., Hwang, S.J., Cho, M.H., Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. Rsc Adv., 6, 2016, 25799.
    • (2016) Rsc Adv. , vol.6 , pp. 25799
    • Han, T.H.1    Sawant, S.Y.2    Hwang, S.J.3    Cho, M.H.4
  • 15
    • 79955465102 scopus 로고    scopus 로고
    • A graphene modified anode to improve the performance of microbial fuel cells
    • [15] Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., Yu, C., A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, 196, 2011, 5402.
    • (2011) J. Power Sources , vol.196 , pp. 5402
    • Zhang, Y.1    Mo, G.2    Li, X.3    Zhang, W.4    Zhang, J.5    Ye, J.6    Huang, X.7    Yu, C.8
  • 16
    • 83055161646 scopus 로고    scopus 로고
    • Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells
    • [16] Ci, S., Wen, Z., Chen, J., He, Z., Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem. Commun., 14, 2012, 71.
    • (2012) Electrochem. Commun. , vol.14 , pp. 71
    • Ci, S.1    Wen, Z.2    Chen, J.3    He, Z.4
  • 17
    • 84866309492 scopus 로고    scopus 로고
    • Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell
    • [17] He, Z., Liu, J., Qiao, Y., Li, C.M., Tan, T.T.Y., Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett, 12, 2012, 4738.
    • (2012) Nano Lett , vol.12 , pp. 4738
    • He, Z.1    Liu, J.2    Qiao, Y.3    Li, C.M.4    Tan, T.T.Y.5
  • 18
    • 84860461429 scopus 로고    scopus 로고
    • Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells
    • [18] Liu, J., Qiao, Y., Guo, C.X., Lim, S., Song, H., Li, C.M., Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresource Technol., 114, 2012, 275.
    • (2012) Bioresource Technol. , vol.114 , pp. 275
    • Liu, J.1    Qiao, Y.2    Guo, C.X.3    Lim, S.4    Song, H.5    Li, C.M.6
  • 19
    • 84859141906 scopus 로고    scopus 로고
    • Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells
    • [19] Yong, Y.-C., Dong, X.-C., Chan-Park, M.B., Song, H., Chen, P., Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. Acs Nano, 6, 2012, 2394.
    • (2012) Acs Nano , vol.6 , pp. 2394
    • Yong, Y.-C.1    Dong, X.-C.2    Chan-Park, M.B.3    Song, H.4    Chen, P.5
  • 20
  • 21
    • 84901772704 scopus 로고    scopus 로고
    • A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells
    • [21] Qiao, Y., Wu, X.-S., Ma, C.-X., He, H., Li, C.M., A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. Rsc Adv., 4, 2014, 21788.
    • (2014) Rsc Adv. , vol.4 , pp. 21788
    • Qiao, Y.1    Wu, X.-S.2    Ma, C.-X.3    He, H.4    Li, C.M.5
  • 22
    • 84936993592 scopus 로고    scopus 로고
    • Facile fabrication of graphene-containing foam as a high-performance anode for microbial fuel cells
    • [22] Yang, L., Wang, S., Peng, S., Jiang, H., Zhang, Y., Deng, W., Tan, Y., Ma, M., Xie, Q., Facile fabrication of graphene-containing foam as a high-performance anode for microbial fuel cells. Chem. Eur. J., 21, 2015, 10634.
    • (2015) Chem. Eur. J. , vol.21 , pp. 10634
    • Yang, L.1    Wang, S.2    Peng, S.3    Jiang, H.4    Zhang, Y.5    Deng, W.6    Tan, Y.7    Ma, M.8    Xie, Q.9
  • 23
    • 84908386623 scopus 로고    scopus 로고
    • High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells
    • [23] Tang, J., Yuan, Y., Liu, T., Zhou, S., High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J. Power Sources., 274, 2015, 170.
    • (2015) J. Power Sources. , vol.274 , pp. 170
    • Tang, J.1    Yuan, Y.2    Liu, T.3    Zhou, S.4
  • 24
    • 84865010545 scopus 로고    scopus 로고
    • Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells
    • [24] Chen, S., Liu, Q., He, G., Zhou, Y., Hanif, M., Peng, X., Wang, S., Hou, H., Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. J. Mater. Chem., 22, 2012, 18609.
    • (2012) J. Mater. Chem. , vol.22 , pp. 18609
    • Chen, S.1    Liu, Q.2    He, G.3    Zhou, Y.4    Hanif, M.5    Peng, X.6    Wang, S.7    Hou, H.8
  • 25
    • 84861869907 scopus 로고    scopus 로고
    • A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems
    • [25] Chen, S., He, G., Hu, X., Xie, M., Wang, S., Zeng, D., Hou, H., Schroeder, U., A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems. Chemsuschem, 5, 2012, 1059.
    • (2012) Chemsuschem , vol.5 , pp. 1059
    • Chen, S.1    He, G.2    Hu, X.3    Xie, M.4    Wang, S.5    Zeng, D.6    Hou, H.7    Schroeder, U.8
  • 26
    • 84890749859 scopus 로고    scopus 로고
    • Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells
    • [26] Yuan, Y., Zhou, S., Liu, Y., Tang, J., Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol., 47, 2013, 14525.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 14525
    • Yuan, Y.1    Zhou, S.2    Liu, Y.3    Tang, J.4
  • 28
    • 74549216063 scopus 로고    scopus 로고
    • 3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities
    • 3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J. Mater. Chem., 20, 2010, 976.
    • (2010) J. Mater. Chem. , vol.20 , pp. 976
    • Zhao, C.1    Wang, W.2    Yu, Z.3    Zhang, H.4    Wang, A.5    Yang, Y.6
  • 30
    • 84861592269 scopus 로고    scopus 로고
    • 3 as template, graphitization catalyst, and activating agent
    • 3 as template, graphitization catalyst, and activating agent. Carbon, 50, 2012, 3753.
    • (2012) Carbon , vol.50 , pp. 3753
    • Yang, G.1    Han, H.2    Li, T.3    Du, C.4
  • 33
    • 84920742374 scopus 로고    scopus 로고
    • 3-assisted template carbonization method for producing nitrogen-containing nanoporous carbon spheres and its electrochemical improvement by the nitridation of azodicarbonamide
    • 3-assisted template carbonization method for producing nitrogen-containing nanoporous carbon spheres and its electrochemical improvement by the nitridation of azodicarbonamide. Electrochim. Acta, 155, 2015, 93.
    • (2015) Electrochim. Acta , vol.155 , pp. 93
    • Xiao, Z.H.1    Zhu, Y.Q.2    Yi, H.T.3    Chen, X.Y.4
  • 34
    • 85065752083 scopus 로고    scopus 로고
    • Biomass-Derived Hierarchical nanoporous carbon with rich functional groups for direct-electron-transfer-based glucose sensing
    • [34] Zhong, X., Yuan, W., Kang, Y., Xie, J., Hu, F., Li, C.M., Biomass-Derived Hierarchical nanoporous carbon with rich functional groups for direct-electron-transfer-based glucose sensing. ChemElectroChem, 3, 2015, 114.
    • (2015) ChemElectroChem , vol.3 , pp. 114
    • Zhong, X.1    Yuan, W.2    Kang, Y.3    Xie, J.4    Hu, F.5    Li, C.M.6
  • 35
    • 34249326597 scopus 로고    scopus 로고
    • Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
    • [35] Qiao, Y., Li, C.M., Bao, S.-J., Bao, Q.-L., Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources, 170, 2007, 79.
    • (2007) J. Power Sources , vol.170 , pp. 79
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Bao, Q.-L.4
  • 36
    • 84883165918 scopus 로고    scopus 로고
    • One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application
    • [36] Lv, Z., Chen, Y., Wei, H., Li, F., Hu, Y., Wei, C., Feng, C., One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim. Acta, 111, 2013, 366.
    • (2013) Electrochim. Acta , vol.111 , pp. 366
    • Lv, Z.1    Chen, Y.2    Wei, H.3    Li, F.4    Hu, Y.5    Wei, C.6    Feng, C.7
  • 37
    • 84884637623 scopus 로고    scopus 로고
    • Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells
    • [37] Zhao, C., Gai, P., Liu, C., Wang, X., Xu, H., Zhang, J., Zhu, J.-J., Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A, 1, 2013, 12587.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 12587
    • Zhao, C.1    Gai, P.2    Liu, C.3    Wang, X.4    Xu, H.5    Zhang, J.6    Zhu, J.-J.7
  • 38
    • 84896053598 scopus 로고    scopus 로고
    • A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells
    • [38] Dutta, K., Kundu, P.P., A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym. Rev., 54, 2014, 401.
    • (2014) Polym. Rev. , vol.54 , pp. 401
    • Dutta, K.1    Kundu, P.P.2
  • 39
    • 41749102338 scopus 로고    scopus 로고
    • Nanostructured polyanifine/titanium dioxide composite anode for microbial fuel cells
    • [39] Qiao, Y., Bao, S.-J., Li, C.M., Cui, X.-Q., Lu, Z.-S., Guo, J., Nanostructured polyanifine/titanium dioxide composite anode for microbial fuel cells. Acs Nano, 2, 2008, 113.
    • (2008) Acs Nano , vol.2 , pp. 113
    • Qiao, Y.1    Bao, S.-J.2    Li, C.M.3    Cui, X.-Q.4    Lu, Z.-S.5    Guo, J.6
  • 40
    • 84961994215 scopus 로고    scopus 로고
    • Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells
    • [40] Ansari, S.A., Parveen, N., Han, T.H., Ansari, M.O., Cho, M.H., Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys. Chem. Chem. Phys., 18, 2016, 9053.
    • (2016) Phys. Chem. Chem. Phys. , vol.18 , pp. 9053
    • Ansari, S.A.1    Parveen, N.2    Han, T.H.3    Ansari, M.O.4    Cho, M.H.5
  • 41
    • 84942242622 scopus 로고    scopus 로고
    • Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell
    • [41] Khilari, S., Pandit, S., Varanasi, J.L., Das, D., Pradhan, D., Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl. Mater. Interfaces, 7, 2015, 20657.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 20657
    • Khilari, S.1    Pandit, S.2    Varanasi, J.L.3    Das, D.4    Pradhan, D.5
  • 42
    • 79956363430 scopus 로고    scopus 로고
    • Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis
    • [42] Li, C., Zhang, L., Ding, L., Ren, H., Cui, H., Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron., 26, 2011, 4169.
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 4169
    • Li, C.1    Zhang, L.2    Ding, L.3    Ren, H.4    Cui, H.5
  • 43
    • 84975107120 scopus 로고    scopus 로고
    • L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells
    • [43] Qiao, Y., Wen, G.-Y., Wu, X.-S., Zou, L., L-Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells. Rsc Adv., 5, 2015, 58921.
    • (2015) Rsc Adv. , vol.5 , pp. 58921
    • Qiao, Y.1    Wen, G.-Y.2    Wu, X.-S.3    Zou, L.4
  • 44
    • 84984787934 scopus 로고    scopus 로고
    • Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells
    • [44] Zou, L., Qiao, Y., Wu, X.-S., Li, C.M., Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources, 328, 2016, 143.
    • (2016) J. Power Sources , vol.328 , pp. 143
    • Zou, L.1    Qiao, Y.2    Wu, X.-S.3    Li, C.M.4
  • 45
    • 84977623037 scopus 로고    scopus 로고
    • Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells
    • [45] Wei, H., Wu, X.-S., Zou, L., Wen, G.-Y., Liu, D.-Y., Qiao, Y., Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J. Power Sources, 315, 2016, 192.
    • (2016) J. Power Sources , vol.315 , pp. 192
    • Wei, H.1    Wu, X.-S.2    Zou, L.3    Wen, G.-Y.4    Liu, D.-Y.5    Qiao, Y.6
  • 47
    • 84922710013 scopus 로고    scopus 로고
    • In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique
    • [47] Stempien, Z., Rybicki, T., Rybicki, E., Kozanecki, M., Szynkowska, M.I., In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Met, 202, 2015, 49.
    • (2015) Synthetic Met , vol.202 , pp. 49
    • Stempien, Z.1    Rybicki, T.2    Rybicki, E.3    Kozanecki, M.4    Szynkowska, M.I.5
  • 48
    • 79959793041 scopus 로고    scopus 로고
    • Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis
    • [48] Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B., Xia, X.-H., Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano, 5, 2011, 4350.
    • (2011) ACS Nano , vol.5 , pp. 4350
    • Sheng, Z.-H.1    Shao, L.2    Chen, J.-J.3    Bao, W.-J.4    Wang, F.-B.5    Xia, X.-H.6
  • 49
    • 84924205290 scopus 로고    scopus 로고
    • Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors
    • [49] Liu, H., Xu, B., Jia, M., Zhang, M., Cao, B., Zhao, X., Wang, Y., Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl. Surface Sci., 332, 2015, 40.
    • (2015) Appl. Surface Sci. , vol.332 , pp. 40
    • Liu, H.1    Xu, B.2    Jia, M.3    Zhang, M.4    Cao, B.5    Zhao, X.6    Wang, Y.7
  • 50
    • 76249084868 scopus 로고    scopus 로고
    • Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline
    • [50] Zhang, L.L., Li, S., Zhang, J., Guo, P., Zheng, J., Zhao, X.S., Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem. Mater., 22, 2010, 1195.
    • (2010) Chem. Mater. , vol.22 , pp. 1195
    • Zhang, L.L.1    Li, S.2    Zhang, J.3    Guo, P.4    Zheng, J.5    Zhao, X.S.6
  • 52
    • 84922407402 scopus 로고    scopus 로고
    • Self-healing electrosynthesied polyaniline film as primer coat for AA 2024-T3
    • [52] Kamaraj, K., Devarapalli, R., Siva, T., Sathiyanarayanan, S., Self-healing electrosynthesied polyaniline film as primer coat for AA 2024-T3. Mater. Chem. Phys., 153, 2015, 256.
    • (2015) Mater. Chem. Phys. , vol.153 , pp. 256
    • Kamaraj, K.1    Devarapalli, R.2    Siva, T.3    Sathiyanarayanan, S.4
  • 53
    • 84872779342 scopus 로고    scopus 로고
    • Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells
    • [53] Yong, Y.-C., Cai, Z., Yu, Y.-Y., Chen, P., Jiang, R., Cao, B., Sun, J.-Z., Wang, J.-Y., Song, H., Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Bioresource Technol., 130, 2013, 763.
    • (2013) Bioresource Technol. , vol.130 , pp. 763
    • Yong, Y.-C.1    Cai, Z.2    Yu, Y.-Y.3    Chen, P.4    Jiang, R.5    Cao, B.6    Sun, J.-Z.7    Wang, J.-Y.8    Song, H.9
  • 54
    • 84921518288 scopus 로고    scopus 로고
    • Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4
    • [54] Ding, C.-m., Lv, M.-l., Zhu, Y., Jiang, L., Liu, H., Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Edit., 54, 2015, 1446.
    • (2015) Angew. Chem. Int. Edit. , vol.54 , pp. 1446
    • Ding, C.-M.1    Lv, M.-L.2    Zhu, Y.3    Jiang, L.4    Liu, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.