-
1
-
-
84864621292
-
Activation Enhancement of Citric Acid Cycle to Promote Bioelectrocatalytic Activity of arcA Knockout Escherichia coli Toward High-Performance Microbial Fuel Cell
-
Liu, J.; Yong, Y.-C.; Song, H.; Li, C. M. Activation Enhancement of Citric Acid Cycle to Promote Bioelectrocatalytic Activity of arcA Knockout Escherichia coli Toward High-Performance Microbial Fuel Cell ACS Catal. 2012, 2, 1749-1752 10.1021/cs3003808
-
(2012)
ACS Catal.
, vol.2
, pp. 1749-1752
-
-
Liu, J.1
Yong, Y.-C.2
Song, H.3
Li, C.M.4
-
2
-
-
84897928113
-
Non-Pt Catalyst as Oxygen Reduction Reaction in microbial fuel cells: A Review
-
Liew, K. B.; Daud, W. R. W.; Ghasemi, M.; Leong, J. X.; Lim, S. S.; Ismail, M. Non-Pt Catalyst as Oxygen Reduction Reaction in microbial fuel cells: A Review Int. J. Hydrogen Energy 2014, 39, 4870-4883 10.1016/j.ijhydene.2014.01.062
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 4870-4883
-
-
Liew, K.B.1
Daud, W.R.W.2
Ghasemi, M.3
Leong, J.X.4
Lim, S.S.5
Ismail, M.6
-
3
-
-
79952280859
-
An Overview of Electrode Materials in Microbial Fuel Cells
-
Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An Overview of Electrode Materials in Microbial Fuel Cells J. Power Sources 2011, 196, 4427-4435 10.1016/j.jpowsour.2011.01.012
-
(2011)
J. Power Sources
, vol.196
, pp. 4427-4435
-
-
Zhou, M.1
Chi, M.2
Luo, J.3
He, H.4
Jin, T.5
-
4
-
-
84865537703
-
Enhanced Performance and Capacitance Behavior of Anode by Rolling Fe3O4 into Activated Carbon in Microbial Fuel Cells
-
Peng, X.; Yu, H.; Wang, X.; Zhou, Q.; Zhang, S.; Geng, L.; Sun, J.; Cai, Z. Enhanced Performance and Capacitance Behavior of Anode by Rolling Fe3O4 into Activated Carbon in Microbial Fuel Cells Bioresour. Technol. 2012, 121, 450-453 10.1016/j.biortech.2012.06.021
-
(2012)
Bioresour. Technol.
, vol.121
, pp. 450-453
-
-
Peng, X.1
Yu, H.2
Wang, X.3
Zhou, Q.4
Zhang, S.5
Geng, L.6
Sun, J.7
Cai, Z.8
-
5
-
-
84870807893
-
Polyaniline/mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells
-
Wang, Y.; Li, B.; Zeng, L.; Cui, D.; Xiang, X.; Li, W. Polyaniline/mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells Biosens. Bioelectron. 2013, 41, 582-588 10.1016/j.bios.2012.09.054
-
(2013)
Biosens. Bioelectron.
, vol.41
, pp. 582-588
-
-
Wang, Y.1
Li, B.2
Zeng, L.3
Cui, D.4
Xiang, X.5
Li, W.6
-
6
-
-
84906816247
-
Synthesis of Iron Oxide/Partly Graphitized Carbon Composites as a High-Efficiency and Low-Cost Cathode Catalyst for Microbial Fuel Cells
-
Ma, M.; Dai, Y.; Zou, J.; Wang, L.; Pan, K.; Fu, H. Synthesis of Iron Oxide/Partly Graphitized Carbon Composites as a High-Efficiency and Low-Cost Cathode Catalyst for Microbial Fuel Cells ACS Appl. Mater. Interfaces 2014, 6, 13438-13447 10.1021/am501844p
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 13438-13447
-
-
Ma, M.1
Dai, Y.2
Zou, J.3
Wang, L.4
Pan, K.5
Fu, H.6
-
7
-
-
84905181263
-
Use of Urchin-like NixCo3-xO4 Hierarchical Nanostructures Based on Non-Precious Metals as Bifunctional Electrocatalysts for Anion-Exchange Membrane Alkaline Alcohol Fuel Cells
-
Manivasakan, P.; Ramasamy, P.; Kim, J. Use of Urchin-like NixCo3-xO4 Hierarchical Nanostructures Based on Non-Precious Metals as Bifunctional Electrocatalysts for Anion-Exchange Membrane Alkaline Alcohol Fuel Cells Nanoscale 2014, 6, 9665-9672 10.1039/C4NR01802H
-
(2014)
Nanoscale
, vol.6
, pp. 9665-9672
-
-
Manivasakan, P.1
Ramasamy, P.2
Kim, J.3
-
8
-
-
84877723211
-
Graphene Supported α-MnO2 Nanotubes as a Cathode Catalyst for Improved Power Generation and Wastewater Treatment in Single-Chambered Microbial Fuel Cells
-
Khilari, S.; Pandit, S.; Ghangrekar, M. M.; Das, D.; Pradhan, D. Graphene Supported α-MnO2 Nanotubes as a Cathode Catalyst for Improved Power Generation and Wastewater Treatment in Single-Chambered Microbial Fuel Cells RSC Adv. 2013, 3, 7902-7911 10.1039/c3ra22569k
-
(2013)
RSC Adv.
, vol.3
, pp. 7902-7911
-
-
Khilari, S.1
Pandit, S.2
Ghangrekar, M.M.3
Das, D.4
Pradhan, D.5
-
9
-
-
79953667601
-
Nano-Structured Textiles as High-Performance Aqueous Cathodes for Microbial Fuel Cells
-
Xie, X.; Pasta, M.; Hu, L.; Yang, Y.; McDonough, J.; Cha, J.; Criddle, C. S.; Cui, Y. Nano-Structured Textiles as High-Performance Aqueous Cathodes for Microbial Fuel Cells Energy Environ. Sci. 2011, 4, 1293-1297 10.1039/c0ee00793e
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1293-1297
-
-
Xie, X.1
Pasta, M.2
Hu, L.3
Yang, Y.4
McDonough, J.5
Cha, J.6
Criddle, C.S.7
Cui, Y.8
-
10
-
-
84889824941
-
Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-doped Graphene Cathode
-
Liu, Y.; Liu, H.; Wang, C.; Hou, S.-X.; Yang, N. Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-doped Graphene Cathode Environ. Sci. Technol. 2013, 47, 13889-13895 10.1021/es4032216
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 13889-13895
-
-
Liu, Y.1
Liu, H.2
Wang, C.3
Hou, S.-X.4
Yang, N.5
-
11
-
-
84883272714
-
Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells
-
Xia, X.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B. E. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells ACS Appl. Mater. Interfaces 2013, 5, 7862-7866 10.1021/am4018225
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 7862-7866
-
-
Xia, X.1
Zhang, F.2
Zhang, X.3
Liang, P.4
Huang, X.5
Logan, B.E.6
-
12
-
-
84859332657
-
Polyaniline Nanofiber/Carbon Black Composite as Oxygen Reduction Catalyst for Air Cathode Microbial Fuel Cells
-
Ahmed, J.; Kim, H. J.; Kim, S. Polyaniline Nanofiber/Carbon Black Composite as Oxygen Reduction Catalyst for Air Cathode Microbial Fuel Cells J. Electrochem. Soc. 2012, 159, B497-B501 10.1149/2.049205jes
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. B497-B501
-
-
Ahmed, J.1
Kim, H.J.2
Kim, S.3
-
13
-
-
71849109386
-
Carbon Nanotubes as Electrode Modifier Promoting Direct Electron Transfer from Shewanella oneidensis
-
Peng, L.; You, S.-J.; Wang, J.-Y. Carbon Nanotubes as Electrode Modifier Promoting Direct Electron Transfer from Shewanella oneidensis Biosens. Bioelectron. 2010, 25, 1248-1251 10.1016/j.bios.2009.10.002
-
(2010)
Biosens. Bioelectron.
, vol.25
, pp. 1248-1251
-
-
Peng, L.1
You, S.-J.2
Wang, J.-Y.3
-
14
-
-
46749150150
-
Development and Optimization of Microbial Fuel cells
-
Dávila, D.; Esquivel, J. P.; Vigués, N.; Sánchez, O.; Garrido, L.; Tomás, N.; Sabaté, N.; del Campo, F. J.; Muñoz, F. J.; Mas, J. Development and Optimization of Microbial Fuel cells J. New Mater. Electrochem. Syst. 2008, 11, 99-103
-
(2008)
J. New Mater. Electrochem. Syst.
, vol.11
, pp. 99-103
-
-
Dávila, D.1
Esquivel, J.P.2
Vigués, N.3
Sánchez, O.4
Garrido, L.5
Tomás, N.6
Sabaté, N.7
Del Campo, F.J.8
Muñoz, F.J.9
Mas, J.10
-
16
-
-
80052699260
-
Recent Progress in Electrodes for Microbial Fuel Cells
-
Wei, J.; Liang, P.; Huang, X. Recent Progress in Electrodes for Microbial Fuel Cells Bioresour. Technol. 2011, 102, 9335-9344 10.1016/j.biortech.2011.07.019
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
17
-
-
84901504515
-
Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells
-
Zhao, C.; Wang, W.-J.; Sun, D.; Wang, X.; Zhang, J.-R.; Zhu, J.-J. Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells Chem.-Eur. J. 2014, 20, 7091-7097 10.1002/chem.201400272
-
(2014)
Chem. - Eur. J.
, vol.20
, pp. 7091-7097
-
-
Zhao, C.1
Wang, W.-J.2
Sun, D.3
Wang, X.4
Zhang, J.-R.5
Zhu, J.-J.6
-
18
-
-
84898074905
-
Multi-Walled Carbon nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells
-
Mehdinia, A.; Ziaei, E.; Jabbari, A. Multi-Walled Carbon nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells Electrochim. Acta 2014, 130, 512-518 10.1016/j.electacta.2014.03.011
-
(2014)
Electrochim. Acta
, vol.130
, pp. 512-518
-
-
Mehdinia, A.1
Ziaei, E.2
Jabbari, A.3
-
19
-
-
84860523790
-
Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications
-
Lv, Z.; Xie, D.; Yue, X.; Feng, C.; Wei, C. Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications J. Power Sources 2012, 210, 26-31 10.1016/j.jpowsour.2012.02.109
-
(2012)
J. Power Sources
, vol.210
, pp. 26-31
-
-
Lv, Z.1
Xie, D.2
Yue, X.3
Feng, C.4
Wei, C.5
-
20
-
-
84901756451
-
Interfacial Electron Transfer of Shewanella putrefaciens Enhanced by Nanoflaky Nickel Oxide Array in Microbial Fuel Cells
-
Qiao, Y.; Wu, X.-S.; Li, C. M. Interfacial Electron Transfer of Shewanella putrefaciens Enhanced by Nanoflaky Nickel Oxide Array in Microbial Fuel Cells J. Power Sources 2014, 266, 226-231 10.1016/j.jpowsour.2014.05.015
-
(2014)
J. Power Sources
, vol.266
, pp. 226-231
-
-
Qiao, Y.1
Wu, X.-S.2
Li, C.M.3
-
21
-
-
67449128243
-
Intermittent Energy Harvesting Improves the Performance of Microbial Fuel Cells
-
Dewan, A.; Beyenal, H.; Lewandowski, Z. Intermittent Energy Harvesting Improves the Performance of Microbial Fuel Cells Environ. Sci. Technol. 2009, 43, 4600-4605 10.1021/es8037092
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 4600-4605
-
-
Dewan, A.1
Beyenal, H.2
Lewandowski, Z.3
-
22
-
-
84858690455
-
Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells
-
Deeke, A.; Sleutels, T. H. J. A.; Hamelers, H. V. M; Buisman, C. J. N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells Environ. Sci. Technol. 2012, 46, 3554-3560 10.1021/es204126r
-
(2012)
Environ. Sci. Technol.
, vol.46
, pp. 3554-3560
-
-
Deeke, A.1
Sleutels, T.H.J.A.2
Hamelers, H.V.M.3
Buisman, C.J.N.4
-
23
-
-
84881522363
-
Time Behavior and Capacitance Analysis of Nano-Fe3O4 Added Microbial Fuel Cells
-
Peng, X.; Yu, H.; Ai, L.; Li, N.; Wang, X. Time Behavior and Capacitance Analysis of Nano-Fe3O4 Added Microbial Fuel Cells Bioresour. Technol. 2013, 144, 689-692 10.1016/j.biortech.2013.07.037
-
(2013)
Bioresour. Technol.
, vol.144
, pp. 689-692
-
-
Peng, X.1
Yu, H.2
Ai, L.3
Li, N.4
Wang, X.5
-
24
-
-
84902330206
-
Improvement of Power Generation Using Shewanella putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions
-
Pandit, S.; Khilari, S.; Roy, S.; Pradhan, D.; Das, D. Improvement of Power Generation Using Shewanella putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions Bioresour. Technol. 2014, 166, 451-457 10.1016/j.biortech.2014.05.075
-
(2014)
Bioresour. Technol.
, vol.166
, pp. 451-457
-
-
Pandit, S.1
Khilari, S.2
Roy, S.3
Pradhan, D.4
Das, D.5
-
25
-
-
84883332913
-
Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials
-
Lv, Z.; Xie, D.; Li, F.; Hu, Y.; Wei, C.; Feng, C. Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials J. Power Sources 2014, 246, 642-649 10.1016/j.jpowsour.2013.08.014
-
(2014)
J. Power Sources
, vol.246
, pp. 642-649
-
-
Lv, Z.1
Xie, D.2
Li, F.3
Hu, Y.4
Wei, C.5
Feng, C.6
-
26
-
-
84867093332
-
Enhanced Anode Performance of Microbial Fuel Cells by Adding Nanosemiconductor Goethite
-
Peng, X.; Yu, H.; Wang, X.; Gao, N.; Geng, L.; Ai, L. Enhanced Anode Performance of Microbial Fuel Cells by Adding Nanosemiconductor Goethite J. Power Sources 2013, 223, 94-99 10.1016/j.jpowsour.2012.09.057
-
(2013)
J. Power Sources
, vol.223
, pp. 94-99
-
-
Peng, X.1
Yu, H.2
Wang, X.3
Gao, N.4
Geng, L.5
Ai, L.6
-
27
-
-
77956809831
-
To Boost c-Type Cytochrome Wire Efficiency of Electrogenic Bacteria with Fe3O4/Au Nanocomposites
-
Deng, L.; Guo, S.; Liu, Z.; Zhou, M.; Li, D.; Liu, L.; Li, G.; Wang, E.; Dong, S. To Boost c-Type Cytochrome Wire Efficiency of Electrogenic Bacteria with Fe3O4/Au Nanocomposites Chem. Commun. 2010, 46, 7172-7174 10.1039/c0cc01371d
-
(2010)
Chem. Commun.
, vol.46
, pp. 7172-7174
-
-
Deng, L.1
Guo, S.2
Liu, Z.3
Zhou, M.4
Li, D.5
Liu, L.6
Li, G.7
Wang, E.8
Dong, S.9
-
28
-
-
84898788843
-
The Preparation of MnFe2O4 Decorated Flexible Graphene Wrapped with PANI and Its Electrochemical Performances for Hybrid Supercapacitors
-
Sankar, K. V.; Selvan, R. K. The Preparation of MnFe2O4 Decorated Flexible Graphene Wrapped with PANI and Its Electrochemical Performances for Hybrid Supercapacitors RSC Adv. 2014, 4, 17555-17566 10.1039/c3ra47681b
-
(2014)
RSC Adv.
, vol.4
, pp. 17555-17566
-
-
Sankar, K.V.1
Selvan, R.K.2
-
29
-
-
84879106448
-
Monodisperse Mx Fe3-x O4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction
-
Zhu, H.; Zhang, S.; Huang, Y.-X.; Wu, L.; Sun, S. Monodisperse Mx Fe3-x O4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction Nano Lett. 2013, 13, 2947-2951 10.1021/nl401325u
-
(2013)
Nano Lett.
, vol.13
, pp. 2947-2951
-
-
Zhu, H.1
Zhang, S.2
Huang, Y.-X.3
Wu, L.4
Sun, S.5
-
30
-
-
84897744456
-
Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications
-
Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications J. Mater. Chem. A 2014, 2, 4491-4509 10.1039/C3TA13462H
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 4491-4509
-
-
Wang, L.1
Lu, X.2
Lei, S.3
Song, Y.4
-
31
-
-
77949530127
-
Improving Electrochemical Performance of Polyaniline by Introducing Carbon Aerogel as Filler
-
Xu, F.; Zheng, G.; Wu, D.; Liang, Y.; Li, Z.; Fu, R. Improving Electrochemical Performance of Polyaniline by Introducing Carbon Aerogel as Filler Phys. Chem. Chem. Phys. 2010, 12, 3270-3275 10.1039/b917677b
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 3270-3275
-
-
Xu, F.1
Zheng, G.2
Wu, D.3
Liang, Y.4
Li, Z.5
Fu, R.6
-
32
-
-
84890384767
-
Manganese Cobaltite/polypyrrole Nanocomposite-Based Air-Cathode for Sustainable Power Generation in the Single-Chambered Microbial Fuel Cells
-
Khilari, S.; Pandit, S.; Das, D.; Pradhan, D. Manganese Cobaltite/polypyrrole Nanocomposite-Based Air-Cathode for Sustainable Power Generation in the Single-Chambered Microbial Fuel Cells Biosens. Bioelectron. 2014, 54, 534-540 10.1016/j.bios.2013.11.044
-
(2014)
Biosens. Bioelectron.
, vol.54
, pp. 534-540
-
-
Khilari, S.1
Pandit, S.2
Das, D.3
Pradhan, D.4
-
33
-
-
84877265885
-
A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells
-
Su, Y.; Zhu, Y.; Yang, X.; Shen, J.; Lu, J.; Zhang, X.; Chen, J.; Li, C. A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells Ind. Eng. Chem. Res. 2013, 52, 6076-6082 10.1021/ie4003766
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 6076-6082
-
-
Su, Y.1
Zhu, Y.2
Yang, X.3
Shen, J.4
Lu, J.5
Zhang, X.6
Chen, J.7
Li, C.8
-
34
-
-
84863115319
-
Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts
-
Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts J. Am. Chem. Soc. 2012, 134, 3517-3523 10.1021/ja210924t
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 3517-3523
-
-
Liang, Y.1
Wang, H.2
Zhou, J.3
Li, Y.4
Wang, J.5
Regier, T.6
Dai, H.7
-
35
-
-
84877062784
-
High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells
-
He, Q.; Li, Q.; Khene, S.; Ren, X.; López-Suárez, F. E.; Lozano-Castelló, D.; Bueno-López, A.; Wu, G. High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells J. Phys. Chem. C 2013, 117, 8697-8707 10.1021/jp401814f
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 8697-8707
-
-
He, Q.1
Li, Q.2
Khene, S.3
Ren, X.4
López-Suárez, F.E.5
Lozano-Castelló, D.6
Bueno-López, A.7
Wu, G.8
-
36
-
-
0037074898
-
A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium
-
Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium Enzyme Microb. Technol. 2002, 30, 145-152 10.1016/S0141-0229(01)00478-1
-
(2002)
Enzyme Microb. Technol.
, vol.30
, pp. 145-152
-
-
Kim, H.J.1
Park, H.S.2
Hyun, M.S.3
Chang, I.S.4
Kim, M.5
Kim, B.H.6
-
37
-
-
44349126251
-
Extracellular Electron Transfer: Wires, Capacitors, Iron Lungs, and More
-
Lovley, D. R. Extracellular Electron Transfer: Wires, Capacitors, Iron Lungs, and More Geobiology 2008, 6, 225-231 10.1111/j.1472-4669.2008.00148.x
-
(2008)
Geobiology
, vol.6
, pp. 225-231
-
-
Lovley, D.R.1
-
38
-
-
77951538331
-
Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells
-
Zhao, Y.; Watanabe, K.; Nakamura, R.; Mori, S.; Liu, H.; Ishii, K.; Hashimoto, K. Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells Chem.-Eur. J. 2010, 16, 4982-4985 10.1002/chem.200903486
-
(2010)
Chem. - Eur. J.
, vol.16
, pp. 4982-4985
-
-
Zhao, Y.1
Watanabe, K.2
Nakamura, R.3
Mori, S.4
Liu, H.5
Ishii, K.6
Hashimoto, K.7
-
39
-
-
33644947596
-
Electron Transfer in Anaerobic Microbial Communities
-
Stams, A. J. M.; de Bok, F. A. M.; Plugge, C. M.; van Eekert, M. H. A.; Dolfing, J.; Schraa, G. Electron Transfer in Anaerobic Microbial Communities Environ. Microbiol. 2006, 8, 371-382 10.1111/j.1462-2920.2006.00989.x
-
(2006)
Environ. Microbiol.
, vol.8
, pp. 371-382
-
-
Stams, A.J.M.1
De Bok, F.A.M.2
Plugge, C.M.3
Van Eekert, M.H.A.4
Dolfing, J.5
Schraa, G.6
-
40
-
-
33646701906
-
Electrochemically Active Bacteria (EAB) and Mediator-Less Microbial Fuel Cells
-
Chang, I. S.; Moon, H.; Bretschger, O.; Jang, J. K.; Park, H. I.; Nealson, K. H.; Kim, B. H. Electrochemically Active Bacteria (EAB) and Mediator-Less Microbial Fuel Cells J. Microbiol. Biotechnol. 2006, 16, 163-177
-
(2006)
J. Microbiol. Biotechnol.
, vol.16
, pp. 163-177
-
-
Chang, I.S.1
Moon, H.2
Bretschger, O.3
Jang, J.K.4
Park, H.I.5
Nealson, K.H.6
Kim, B.H.7
-
41
-
-
21344463074
-
-
Eds. 2 nd ed. Wiley-Interscience: Hoboken, NJ, USA
-
Barsoukov, E.; Macdonald, J. R., Eds.; Impedance Spectroscopy: Theory, Experiment, and Applications, 2 nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005; p 87.
-
(2005)
Impedance Spectroscopy: Theory, Experiment, and Applications
, pp. 87
-
-
Barsoukov, E.1
Macdonald, J.R.2
-
42
-
-
84919933474
-
Vertically Aligned ZnO Nanorod Core-Polypyrrole Conducting Polymer Sheath and Nanotube Arrays for Electrochemical Supercapacitor Energy Storage
-
Sidhu, N.; Rastogi, A. C. Vertically Aligned ZnO Nanorod Core-Polypyrrole Conducting Polymer Sheath and Nanotube Arrays for Electrochemical Supercapacitor Energy Storage Nanoscale Res. Lett. 2014, 9, 453-468 10.1186/1556-276X-9-453
-
(2014)
Nanoscale Res. Lett.
, vol.9
, pp. 453-468
-
-
Sidhu, N.1
Rastogi, A.C.2
-
43
-
-
84937109325
-
Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells
-
Zhao, C.; Wu, J.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells Small 2015, 11, 3440-3443 10.1002/smll.201403328
-
(2015)
Small
, vol.11
, pp. 3440-3443
-
-
Zhao, C.1
Wu, J.2
Kjelleberg, S.3
Loo, J.S.C.4
Zhang, Q.5
-
44
-
-
79952814680
-
The overshoot phenomenon as a function of internal resistance in microbial fuel cells
-
Winfield, J.; Ieropoulos, I.; Greenman, J.; Dennis, J. The overshoot phenomenon as a function of internal resistance in microbial fuel cells Bioelectrochemistry 2011, 81, 22-27 10.1016/j.bioelechem.2011.01.001
-
(2011)
Bioelectrochemistry
, vol.81
, pp. 22-27
-
-
Winfield, J.1
Ieropoulos, I.2
Greenman, J.3
Dennis, J.4
-
45
-
-
80052384324
-
Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells
-
Hong, Y.; Call, D. F.; Werner, C. M.; Logan, B. E. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells Biosens. Bioelectron. 2011, 28, 71-76 10.1016/j.bios.2011.06.045
-
(2011)
Biosens. Bioelectron.
, vol.28
, pp. 71-76
-
-
Hong, Y.1
Call, D.F.2
Werner, C.M.3
Logan, B.E.4
-
46
-
-
84877062359
-
Lack of anodic capacitance causes power overshoot in microbial fuel cells
-
Peng, X.; Yu, H.; Yu, H.; Wang, X. Lack of anodic capacitance causes power overshoot in microbial fuel cells Bioresour. Technol. 2013, 138, 353-358 10.1016/j.biortech.2013.03.187
-
(2013)
Bioresour. Technol.
, vol.138
, pp. 353-358
-
-
Peng, X.1
Yu, H.2
Yu, H.3
Wang, X.4
-
47
-
-
33845270723
-
Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor
-
Kuo, S.-L.; Lee, J.-F.; Wu, N.-L. Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor J. Electrochem. Soc. 2007, 154, A34-A38 10.1149/1.2388743
-
(2007)
J. Electrochem. Soc.
, vol.154
, pp. A34-A38
-
-
Kuo, S.-L.1
Lee, J.-F.2
Wu, N.-L.3
-
48
-
-
84900830476
-
Anode modification with capacitive materials for a microbial fuel cell: An increase in transient power or stationary power
-
Feng, C.; Lv, Z.; Yang, X.; Wei, C. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power Phys. Chem. Chem. Phys. 2014, 16, 10464-10472 10.1039/c4cp00923a
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 10464-10472
-
-
Feng, C.1
Lv, Z.2
Yang, X.3
Wei, C.4
-
49
-
-
84867649161
-
A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes
-
Hou, J.; Liu, Z.; Zhang, P. A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes J. Power Sources 2013, 224, 139-144 10.1016/j.jpowsour.2012.09.091
-
(2013)
J. Power Sources
, vol.224
, pp. 139-144
-
-
Hou, J.1
Liu, Z.2
Zhang, P.3
-
50
-
-
41749102338
-
Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells
-
Qiao, Y.; Bao, S.-J.; Li, C. M.; Cui, X.-Q.; Lu, Z.-S.; Guo, J. Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells ACS Nano 2008, 2, 113-119 10.1021/nn700102s
-
(2008)
ACS Nano
, vol.2
, pp. 113-119
-
-
Qiao, Y.1
Bao, S.-J.2
Li, C.M.3
Cui, X.-Q.4
Lu, Z.-S.5
Guo, J.6
-
51
-
-
0025018122
-
Respiration-Linked Proton Translocation Coupled to Anaerobic Reduction of Manganese (IV) and Iron (III) in Shewanella putrefaciens MR-1
-
Myers, C. R.; Nealson, K. H. Respiration-Linked Proton Translocation Coupled to Anaerobic Reduction of Manganese (IV) and Iron (III) in Shewanella putrefaciens MR-1 J. Bacteriol. 1990, 172, 6232-6238
-
(1990)
J. Bacteriol.
, vol.172
, pp. 6232-6238
-
-
Myers, C.R.1
Nealson, K.H.2
-
52
-
-
7044222207
-
Dissimilatory Fe(III) and Mn(IV) reduction
-
Lovley, D. R.; Holmes, D. E.; Nevin, K. P. Dissimilatory Fe(III) and Mn(IV) reduction Adv. Microb. Physiol. 2004, 49, 219-286 10.1016/S0065-2911(04)49005-5
-
(2004)
Adv. Microb. Physiol.
, vol.49
, pp. 219-286
-
-
Lovley, D.R.1
Holmes, D.E.2
Nevin, K.P.3
|