메뉴 건너뛰기




Volumn 7, Issue 37, 2015, Pages 20657-20666

Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell

Author keywords

anode modifier; composites; green energy; oxygen reduction reaction catalyst; spinel

Indexed keywords

ANODES; CARBON; CATALYSTS; CATHODES; COMPOSITE MATERIALS; COST EFFECTIVENESS; ELECTRODES; ELECTROLYTIC REDUCTION; FERRITE; FUEL CELLS; MANGANESE; MOLECULAR BIOLOGY; PLATINUM; PRECIOUS METALS;

EID: 84942242622     PISSN: 19448244     EISSN: 19448252     Source Type: Journal    
DOI: 10.1021/acsami.5b05273     Document Type: Article
Times cited : (138)

References (52)
  • 1
    • 84864621292 scopus 로고    scopus 로고
    • Activation Enhancement of Citric Acid Cycle to Promote Bioelectrocatalytic Activity of arcA Knockout Escherichia coli Toward High-Performance Microbial Fuel Cell
    • Liu, J.; Yong, Y.-C.; Song, H.; Li, C. M. Activation Enhancement of Citric Acid Cycle to Promote Bioelectrocatalytic Activity of arcA Knockout Escherichia coli Toward High-Performance Microbial Fuel Cell ACS Catal. 2012, 2, 1749-1752 10.1021/cs3003808
    • (2012) ACS Catal. , vol.2 , pp. 1749-1752
    • Liu, J.1    Yong, Y.-C.2    Song, H.3    Li, C.M.4
  • 2
    • 84897928113 scopus 로고    scopus 로고
    • Non-Pt Catalyst as Oxygen Reduction Reaction in microbial fuel cells: A Review
    • Liew, K. B.; Daud, W. R. W.; Ghasemi, M.; Leong, J. X.; Lim, S. S.; Ismail, M. Non-Pt Catalyst as Oxygen Reduction Reaction in microbial fuel cells: A Review Int. J. Hydrogen Energy 2014, 39, 4870-4883 10.1016/j.ijhydene.2014.01.062
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 4870-4883
    • Liew, K.B.1    Daud, W.R.W.2    Ghasemi, M.3    Leong, J.X.4    Lim, S.S.5    Ismail, M.6
  • 3
    • 79952280859 scopus 로고    scopus 로고
    • An Overview of Electrode Materials in Microbial Fuel Cells
    • Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An Overview of Electrode Materials in Microbial Fuel Cells J. Power Sources 2011, 196, 4427-4435 10.1016/j.jpowsour.2011.01.012
    • (2011) J. Power Sources , vol.196 , pp. 4427-4435
    • Zhou, M.1    Chi, M.2    Luo, J.3    He, H.4    Jin, T.5
  • 4
    • 84865537703 scopus 로고    scopus 로고
    • Enhanced Performance and Capacitance Behavior of Anode by Rolling Fe3O4 into Activated Carbon in Microbial Fuel Cells
    • Peng, X.; Yu, H.; Wang, X.; Zhou, Q.; Zhang, S.; Geng, L.; Sun, J.; Cai, Z. Enhanced Performance and Capacitance Behavior of Anode by Rolling Fe3O4 into Activated Carbon in Microbial Fuel Cells Bioresour. Technol. 2012, 121, 450-453 10.1016/j.biortech.2012.06.021
    • (2012) Bioresour. Technol. , vol.121 , pp. 450-453
    • Peng, X.1    Yu, H.2    Wang, X.3    Zhou, Q.4    Zhang, S.5    Geng, L.6    Sun, J.7    Cai, Z.8
  • 5
    • 84870807893 scopus 로고    scopus 로고
    • Polyaniline/mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells
    • Wang, Y.; Li, B.; Zeng, L.; Cui, D.; Xiang, X.; Li, W. Polyaniline/mesoporous Tungsten Trioxide Composite as Anode Electrocatalyst for High-Performance Microbial Fuel Cells Biosens. Bioelectron. 2013, 41, 582-588 10.1016/j.bios.2012.09.054
    • (2013) Biosens. Bioelectron. , vol.41 , pp. 582-588
    • Wang, Y.1    Li, B.2    Zeng, L.3    Cui, D.4    Xiang, X.5    Li, W.6
  • 6
    • 84906816247 scopus 로고    scopus 로고
    • Synthesis of Iron Oxide/Partly Graphitized Carbon Composites as a High-Efficiency and Low-Cost Cathode Catalyst for Microbial Fuel Cells
    • Ma, M.; Dai, Y.; Zou, J.; Wang, L.; Pan, K.; Fu, H. Synthesis of Iron Oxide/Partly Graphitized Carbon Composites as a High-Efficiency and Low-Cost Cathode Catalyst for Microbial Fuel Cells ACS Appl. Mater. Interfaces 2014, 6, 13438-13447 10.1021/am501844p
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 13438-13447
    • Ma, M.1    Dai, Y.2    Zou, J.3    Wang, L.4    Pan, K.5    Fu, H.6
  • 7
    • 84905181263 scopus 로고    scopus 로고
    • Use of Urchin-like NixCo3-xO4 Hierarchical Nanostructures Based on Non-Precious Metals as Bifunctional Electrocatalysts for Anion-Exchange Membrane Alkaline Alcohol Fuel Cells
    • Manivasakan, P.; Ramasamy, P.; Kim, J. Use of Urchin-like NixCo3-xO4 Hierarchical Nanostructures Based on Non-Precious Metals as Bifunctional Electrocatalysts for Anion-Exchange Membrane Alkaline Alcohol Fuel Cells Nanoscale 2014, 6, 9665-9672 10.1039/C4NR01802H
    • (2014) Nanoscale , vol.6 , pp. 9665-9672
    • Manivasakan, P.1    Ramasamy, P.2    Kim, J.3
  • 8
    • 84877723211 scopus 로고    scopus 로고
    • Graphene Supported α-MnO2 Nanotubes as a Cathode Catalyst for Improved Power Generation and Wastewater Treatment in Single-Chambered Microbial Fuel Cells
    • Khilari, S.; Pandit, S.; Ghangrekar, M. M.; Das, D.; Pradhan, D. Graphene Supported α-MnO2 Nanotubes as a Cathode Catalyst for Improved Power Generation and Wastewater Treatment in Single-Chambered Microbial Fuel Cells RSC Adv. 2013, 3, 7902-7911 10.1039/c3ra22569k
    • (2013) RSC Adv. , vol.3 , pp. 7902-7911
    • Khilari, S.1    Pandit, S.2    Ghangrekar, M.M.3    Das, D.4    Pradhan, D.5
  • 9
    • 79953667601 scopus 로고    scopus 로고
    • Nano-Structured Textiles as High-Performance Aqueous Cathodes for Microbial Fuel Cells
    • Xie, X.; Pasta, M.; Hu, L.; Yang, Y.; McDonough, J.; Cha, J.; Criddle, C. S.; Cui, Y. Nano-Structured Textiles as High-Performance Aqueous Cathodes for Microbial Fuel Cells Energy Environ. Sci. 2011, 4, 1293-1297 10.1039/c0ee00793e
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1293-1297
    • Xie, X.1    Pasta, M.2    Hu, L.3    Yang, Y.4    McDonough, J.5    Cha, J.6    Criddle, C.S.7    Cui, Y.8
  • 10
    • 84889824941 scopus 로고    scopus 로고
    • Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-doped Graphene Cathode
    • Liu, Y.; Liu, H.; Wang, C.; Hou, S.-X.; Yang, N. Sustainable Energy Recovery in Wastewater Treatment by Microbial Fuel Cells: Stable Power Generation with Nitrogen-doped Graphene Cathode Environ. Sci. Technol. 2013, 47, 13889-13895 10.1021/es4032216
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 13889-13895
    • Liu, Y.1    Liu, H.2    Wang, C.3    Hou, S.-X.4    Yang, N.5
  • 11
    • 84883272714 scopus 로고    scopus 로고
    • Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells
    • Xia, X.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B. E. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells ACS Appl. Mater. Interfaces 2013, 5, 7862-7866 10.1021/am4018225
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 7862-7866
    • Xia, X.1    Zhang, F.2    Zhang, X.3    Liang, P.4    Huang, X.5    Logan, B.E.6
  • 12
    • 84859332657 scopus 로고    scopus 로고
    • Polyaniline Nanofiber/Carbon Black Composite as Oxygen Reduction Catalyst for Air Cathode Microbial Fuel Cells
    • Ahmed, J.; Kim, H. J.; Kim, S. Polyaniline Nanofiber/Carbon Black Composite as Oxygen Reduction Catalyst for Air Cathode Microbial Fuel Cells J. Electrochem. Soc. 2012, 159, B497-B501 10.1149/2.049205jes
    • (2012) J. Electrochem. Soc. , vol.159 , pp. B497-B501
    • Ahmed, J.1    Kim, H.J.2    Kim, S.3
  • 13
    • 71849109386 scopus 로고    scopus 로고
    • Carbon Nanotubes as Electrode Modifier Promoting Direct Electron Transfer from Shewanella oneidensis
    • Peng, L.; You, S.-J.; Wang, J.-Y. Carbon Nanotubes as Electrode Modifier Promoting Direct Electron Transfer from Shewanella oneidensis Biosens. Bioelectron. 2010, 25, 1248-1251 10.1016/j.bios.2009.10.002
    • (2010) Biosens. Bioelectron. , vol.25 , pp. 1248-1251
    • Peng, L.1    You, S.-J.2    Wang, J.-Y.3
  • 16
    • 80052699260 scopus 로고    scopus 로고
    • Recent Progress in Electrodes for Microbial Fuel Cells
    • Wei, J.; Liang, P.; Huang, X. Recent Progress in Electrodes for Microbial Fuel Cells Bioresour. Technol. 2011, 102, 9335-9344 10.1016/j.biortech.2011.07.019
    • (2011) Bioresour. Technol. , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 17
    • 84901504515 scopus 로고    scopus 로고
    • Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells
    • Zhao, C.; Wang, W.-J.; Sun, D.; Wang, X.; Zhang, J.-R.; Zhu, J.-J. Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells Chem.-Eur. J. 2014, 20, 7091-7097 10.1002/chem.201400272
    • (2014) Chem. - Eur. J. , vol.20 , pp. 7091-7097
    • Zhao, C.1    Wang, W.-J.2    Sun, D.3    Wang, X.4    Zhang, J.-R.5    Zhu, J.-J.6
  • 18
    • 84898074905 scopus 로고    scopus 로고
    • Multi-Walled Carbon nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells
    • Mehdinia, A.; Ziaei, E.; Jabbari, A. Multi-Walled Carbon nanotube/SnO2 Nanocomposite: A Novel Anode Material for Microbial Fuel Cells Electrochim. Acta 2014, 130, 512-518 10.1016/j.electacta.2014.03.011
    • (2014) Electrochim. Acta , vol.130 , pp. 512-518
    • Mehdinia, A.1    Ziaei, E.2    Jabbari, A.3
  • 19
    • 84860523790 scopus 로고    scopus 로고
    • Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications
    • Lv, Z.; Xie, D.; Yue, X.; Feng, C.; Wei, C. Ruthenium Oxide-Coated Carbon Felt Electrode: A Highly Active Anode for Microbial Fuel Cell Applications J. Power Sources 2012, 210, 26-31 10.1016/j.jpowsour.2012.02.109
    • (2012) J. Power Sources , vol.210 , pp. 26-31
    • Lv, Z.1    Xie, D.2    Yue, X.3    Feng, C.4    Wei, C.5
  • 20
    • 84901756451 scopus 로고    scopus 로고
    • Interfacial Electron Transfer of Shewanella putrefaciens Enhanced by Nanoflaky Nickel Oxide Array in Microbial Fuel Cells
    • Qiao, Y.; Wu, X.-S.; Li, C. M. Interfacial Electron Transfer of Shewanella putrefaciens Enhanced by Nanoflaky Nickel Oxide Array in Microbial Fuel Cells J. Power Sources 2014, 266, 226-231 10.1016/j.jpowsour.2014.05.015
    • (2014) J. Power Sources , vol.266 , pp. 226-231
    • Qiao, Y.1    Wu, X.-S.2    Li, C.M.3
  • 21
    • 67449128243 scopus 로고    scopus 로고
    • Intermittent Energy Harvesting Improves the Performance of Microbial Fuel Cells
    • Dewan, A.; Beyenal, H.; Lewandowski, Z. Intermittent Energy Harvesting Improves the Performance of Microbial Fuel Cells Environ. Sci. Technol. 2009, 43, 4600-4605 10.1021/es8037092
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 4600-4605
    • Dewan, A.1    Beyenal, H.2    Lewandowski, Z.3
  • 22
    • 84858690455 scopus 로고    scopus 로고
    • Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells
    • Deeke, A.; Sleutels, T. H. J. A.; Hamelers, H. V. M; Buisman, C. J. N. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells Environ. Sci. Technol. 2012, 46, 3554-3560 10.1021/es204126r
    • (2012) Environ. Sci. Technol. , vol.46 , pp. 3554-3560
    • Deeke, A.1    Sleutels, T.H.J.A.2    Hamelers, H.V.M.3    Buisman, C.J.N.4
  • 23
    • 84881522363 scopus 로고    scopus 로고
    • Time Behavior and Capacitance Analysis of Nano-Fe3O4 Added Microbial Fuel Cells
    • Peng, X.; Yu, H.; Ai, L.; Li, N.; Wang, X. Time Behavior and Capacitance Analysis of Nano-Fe3O4 Added Microbial Fuel Cells Bioresour. Technol. 2013, 144, 689-692 10.1016/j.biortech.2013.07.037
    • (2013) Bioresour. Technol. , vol.144 , pp. 689-692
    • Peng, X.1    Yu, H.2    Ai, L.3    Li, N.4    Wang, X.5
  • 24
    • 84902330206 scopus 로고    scopus 로고
    • Improvement of Power Generation Using Shewanella putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions
    • Pandit, S.; Khilari, S.; Roy, S.; Pradhan, D.; Das, D. Improvement of Power Generation Using Shewanella putrefaciens Mediated Bioanode in a Single Chambered Microbial Fuel Cell: Effect of Different Anodic Operating Conditions Bioresour. Technol. 2014, 166, 451-457 10.1016/j.biortech.2014.05.075
    • (2014) Bioresour. Technol. , vol.166 , pp. 451-457
    • Pandit, S.1    Khilari, S.2    Roy, S.3    Pradhan, D.4    Das, D.5
  • 25
    • 84883332913 scopus 로고    scopus 로고
    • Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials
    • Lv, Z.; Xie, D.; Li, F.; Hu, Y.; Wei, C.; Feng, C. Microbial Fuel Cell as a Biocapacitor by Using Pseudo-Capacitive Anode Materials J. Power Sources 2014, 246, 642-649 10.1016/j.jpowsour.2013.08.014
    • (2014) J. Power Sources , vol.246 , pp. 642-649
    • Lv, Z.1    Xie, D.2    Li, F.3    Hu, Y.4    Wei, C.5    Feng, C.6
  • 26
    • 84867093332 scopus 로고    scopus 로고
    • Enhanced Anode Performance of Microbial Fuel Cells by Adding Nanosemiconductor Goethite
    • Peng, X.; Yu, H.; Wang, X.; Gao, N.; Geng, L.; Ai, L. Enhanced Anode Performance of Microbial Fuel Cells by Adding Nanosemiconductor Goethite J. Power Sources 2013, 223, 94-99 10.1016/j.jpowsour.2012.09.057
    • (2013) J. Power Sources , vol.223 , pp. 94-99
    • Peng, X.1    Yu, H.2    Wang, X.3    Gao, N.4    Geng, L.5    Ai, L.6
  • 27
    • 77956809831 scopus 로고    scopus 로고
    • To Boost c-Type Cytochrome Wire Efficiency of Electrogenic Bacteria with Fe3O4/Au Nanocomposites
    • Deng, L.; Guo, S.; Liu, Z.; Zhou, M.; Li, D.; Liu, L.; Li, G.; Wang, E.; Dong, S. To Boost c-Type Cytochrome Wire Efficiency of Electrogenic Bacteria with Fe3O4/Au Nanocomposites Chem. Commun. 2010, 46, 7172-7174 10.1039/c0cc01371d
    • (2010) Chem. Commun. , vol.46 , pp. 7172-7174
    • Deng, L.1    Guo, S.2    Liu, Z.3    Zhou, M.4    Li, D.5    Liu, L.6    Li, G.7    Wang, E.8    Dong, S.9
  • 28
    • 84898788843 scopus 로고    scopus 로고
    • The Preparation of MnFe2O4 Decorated Flexible Graphene Wrapped with PANI and Its Electrochemical Performances for Hybrid Supercapacitors
    • Sankar, K. V.; Selvan, R. K. The Preparation of MnFe2O4 Decorated Flexible Graphene Wrapped with PANI and Its Electrochemical Performances for Hybrid Supercapacitors RSC Adv. 2014, 4, 17555-17566 10.1039/c3ra47681b
    • (2014) RSC Adv. , vol.4 , pp. 17555-17566
    • Sankar, K.V.1    Selvan, R.K.2
  • 29
    • 84879106448 scopus 로고    scopus 로고
    • Monodisperse Mx Fe3-x O4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction
    • Zhu, H.; Zhang, S.; Huang, Y.-X.; Wu, L.; Sun, S. Monodisperse Mx Fe3-x O4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction Nano Lett. 2013, 13, 2947-2951 10.1021/nl401325u
    • (2013) Nano Lett. , vol.13 , pp. 2947-2951
    • Zhu, H.1    Zhang, S.2    Huang, Y.-X.3    Wu, L.4    Sun, S.5
  • 30
    • 84897744456 scopus 로고    scopus 로고
    • Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications
    • Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications J. Mater. Chem. A 2014, 2, 4491-4509 10.1039/C3TA13462H
    • (2014) J. Mater. Chem. A , vol.2 , pp. 4491-4509
    • Wang, L.1    Lu, X.2    Lei, S.3    Song, Y.4
  • 31
    • 77949530127 scopus 로고    scopus 로고
    • Improving Electrochemical Performance of Polyaniline by Introducing Carbon Aerogel as Filler
    • Xu, F.; Zheng, G.; Wu, D.; Liang, Y.; Li, Z.; Fu, R. Improving Electrochemical Performance of Polyaniline by Introducing Carbon Aerogel as Filler Phys. Chem. Chem. Phys. 2010, 12, 3270-3275 10.1039/b917677b
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 3270-3275
    • Xu, F.1    Zheng, G.2    Wu, D.3    Liang, Y.4    Li, Z.5    Fu, R.6
  • 32
    • 84890384767 scopus 로고    scopus 로고
    • Manganese Cobaltite/polypyrrole Nanocomposite-Based Air-Cathode for Sustainable Power Generation in the Single-Chambered Microbial Fuel Cells
    • Khilari, S.; Pandit, S.; Das, D.; Pradhan, D. Manganese Cobaltite/polypyrrole Nanocomposite-Based Air-Cathode for Sustainable Power Generation in the Single-Chambered Microbial Fuel Cells Biosens. Bioelectron. 2014, 54, 534-540 10.1016/j.bios.2013.11.044
    • (2014) Biosens. Bioelectron. , vol.54 , pp. 534-540
    • Khilari, S.1    Pandit, S.2    Das, D.3    Pradhan, D.4
  • 33
    • 84877265885 scopus 로고    scopus 로고
    • A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells
    • Su, Y.; Zhu, Y.; Yang, X.; Shen, J.; Lu, J.; Zhang, X.; Chen, J.; Li, C. A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells Ind. Eng. Chem. Res. 2013, 52, 6076-6082 10.1021/ie4003766
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 6076-6082
    • Su, Y.1    Zhu, Y.2    Yang, X.3    Shen, J.4    Lu, J.5    Zhang, X.6    Chen, J.7    Li, C.8
  • 34
    • 84863115319 scopus 로고    scopus 로고
    • Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts
    • Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts J. Am. Chem. Soc. 2012, 134, 3517-3523 10.1021/ja210924t
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 3517-3523
    • Liang, Y.1    Wang, H.2    Zhou, J.3    Li, Y.4    Wang, J.5    Regier, T.6    Dai, H.7
  • 35
    • 84877062784 scopus 로고    scopus 로고
    • High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells
    • He, Q.; Li, Q.; Khene, S.; Ren, X.; López-Suárez, F. E.; Lozano-Castelló, D.; Bueno-López, A.; Wu, G. High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells J. Phys. Chem. C 2013, 117, 8697-8707 10.1021/jp401814f
    • (2013) J. Phys. Chem. C , vol.117 , pp. 8697-8707
    • He, Q.1    Li, Q.2    Khene, S.3    Ren, X.4    López-Suárez, F.E.5    Lozano-Castelló, D.6    Bueno-López, A.7    Wu, G.8
  • 36
    • 0037074898 scopus 로고    scopus 로고
    • A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium
    • Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. A Mediator-Less Microbial Fuel Cell Using a Metal Reducing Bacterium Enzyme Microb. Technol. 2002, 30, 145-152 10.1016/S0141-0229(01)00478-1
    • (2002) Enzyme Microb. Technol. , vol.30 , pp. 145-152
    • Kim, H.J.1    Park, H.S.2    Hyun, M.S.3    Chang, I.S.4    Kim, M.5    Kim, B.H.6
  • 37
    • 44349126251 scopus 로고    scopus 로고
    • Extracellular Electron Transfer: Wires, Capacitors, Iron Lungs, and More
    • Lovley, D. R. Extracellular Electron Transfer: Wires, Capacitors, Iron Lungs, and More Geobiology 2008, 6, 225-231 10.1111/j.1472-4669.2008.00148.x
    • (2008) Geobiology , vol.6 , pp. 225-231
    • Lovley, D.R.1
  • 38
    • 77951538331 scopus 로고    scopus 로고
    • Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells
    • Zhao, Y.; Watanabe, K.; Nakamura, R.; Mori, S.; Liu, H.; Ishii, K.; Hashimoto, K. Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells Chem.-Eur. J. 2010, 16, 4982-4985 10.1002/chem.200903486
    • (2010) Chem. - Eur. J. , vol.16 , pp. 4982-4985
    • Zhao, Y.1    Watanabe, K.2    Nakamura, R.3    Mori, S.4    Liu, H.5    Ishii, K.6    Hashimoto, K.7
  • 42
    • 84919933474 scopus 로고    scopus 로고
    • Vertically Aligned ZnO Nanorod Core-Polypyrrole Conducting Polymer Sheath and Nanotube Arrays for Electrochemical Supercapacitor Energy Storage
    • Sidhu, N.; Rastogi, A. C. Vertically Aligned ZnO Nanorod Core-Polypyrrole Conducting Polymer Sheath and Nanotube Arrays for Electrochemical Supercapacitor Energy Storage Nanoscale Res. Lett. 2014, 9, 453-468 10.1186/1556-276X-9-453
    • (2014) Nanoscale Res. Lett. , vol.9 , pp. 453-468
    • Sidhu, N.1    Rastogi, A.C.2
  • 43
    • 84937109325 scopus 로고    scopus 로고
    • Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells
    • Zhao, C.; Wu, J.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells Small 2015, 11, 3440-3443 10.1002/smll.201403328
    • (2015) Small , vol.11 , pp. 3440-3443
    • Zhao, C.1    Wu, J.2    Kjelleberg, S.3    Loo, J.S.C.4    Zhang, Q.5
  • 44
    • 79952814680 scopus 로고    scopus 로고
    • The overshoot phenomenon as a function of internal resistance in microbial fuel cells
    • Winfield, J.; Ieropoulos, I.; Greenman, J.; Dennis, J. The overshoot phenomenon as a function of internal resistance in microbial fuel cells Bioelectrochemistry 2011, 81, 22-27 10.1016/j.bioelechem.2011.01.001
    • (2011) Bioelectrochemistry , vol.81 , pp. 22-27
    • Winfield, J.1    Ieropoulos, I.2    Greenman, J.3    Dennis, J.4
  • 45
    • 80052384324 scopus 로고    scopus 로고
    • Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells
    • Hong, Y.; Call, D. F.; Werner, C. M.; Logan, B. E. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells Biosens. Bioelectron. 2011, 28, 71-76 10.1016/j.bios.2011.06.045
    • (2011) Biosens. Bioelectron. , vol.28 , pp. 71-76
    • Hong, Y.1    Call, D.F.2    Werner, C.M.3    Logan, B.E.4
  • 46
    • 84877062359 scopus 로고    scopus 로고
    • Lack of anodic capacitance causes power overshoot in microbial fuel cells
    • Peng, X.; Yu, H.; Yu, H.; Wang, X. Lack of anodic capacitance causes power overshoot in microbial fuel cells Bioresour. Technol. 2013, 138, 353-358 10.1016/j.biortech.2013.03.187
    • (2013) Bioresour. Technol. , vol.138 , pp. 353-358
    • Peng, X.1    Yu, H.2    Yu, H.3    Wang, X.4
  • 47
    • 33845270723 scopus 로고    scopus 로고
    • Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor
    • Kuo, S.-L.; Lee, J.-F.; Wu, N.-L. Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor J. Electrochem. Soc. 2007, 154, A34-A38 10.1149/1.2388743
    • (2007) J. Electrochem. Soc. , vol.154 , pp. A34-A38
    • Kuo, S.-L.1    Lee, J.-F.2    Wu, N.-L.3
  • 48
    • 84900830476 scopus 로고    scopus 로고
    • Anode modification with capacitive materials for a microbial fuel cell: An increase in transient power or stationary power
    • Feng, C.; Lv, Z.; Yang, X.; Wei, C. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power Phys. Chem. Chem. Phys. 2014, 16, 10464-10472 10.1039/c4cp00923a
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 10464-10472
    • Feng, C.1    Lv, Z.2    Yang, X.3    Wei, C.4
  • 49
    • 84867649161 scopus 로고    scopus 로고
    • A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes
    • Hou, J.; Liu, Z.; Zhang, P. A New Method for Fabrication of Graphene/Polyaniline Nanocomplex Modified Microbial Fuel Cell Anodes J. Power Sources 2013, 224, 139-144 10.1016/j.jpowsour.2012.09.091
    • (2013) J. Power Sources , vol.224 , pp. 139-144
    • Hou, J.1    Liu, Z.2    Zhang, P.3
  • 50
    • 41749102338 scopus 로고    scopus 로고
    • Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells
    • Qiao, Y.; Bao, S.-J.; Li, C. M.; Cui, X.-Q.; Lu, Z.-S.; Guo, J. Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells ACS Nano 2008, 2, 113-119 10.1021/nn700102s
    • (2008) ACS Nano , vol.2 , pp. 113-119
    • Qiao, Y.1    Bao, S.-J.2    Li, C.M.3    Cui, X.-Q.4    Lu, Z.-S.5    Guo, J.6
  • 51
    • 0025018122 scopus 로고
    • Respiration-Linked Proton Translocation Coupled to Anaerobic Reduction of Manganese (IV) and Iron (III) in Shewanella putrefaciens MR-1
    • Myers, C. R.; Nealson, K. H. Respiration-Linked Proton Translocation Coupled to Anaerobic Reduction of Manganese (IV) and Iron (III) in Shewanella putrefaciens MR-1 J. Bacteriol. 1990, 172, 6232-6238
    • (1990) J. Bacteriol. , vol.172 , pp. 6232-6238
    • Myers, C.R.1    Nealson, K.H.2
  • 52
    • 7044222207 scopus 로고    scopus 로고
    • Dissimilatory Fe(III) and Mn(IV) reduction
    • Lovley, D. R.; Holmes, D. E.; Nevin, K. P. Dissimilatory Fe(III) and Mn(IV) reduction Adv. Microb. Physiol. 2004, 49, 219-286 10.1016/S0065-2911(04)49005-5
    • (2004) Adv. Microb. Physiol. , vol.49 , pp. 219-286
    • Lovley, D.R.1    Holmes, D.E.2    Nevin, K.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.