메뉴 건너뛰기




Volumn , Issue , 2016, Pages 7195-7201

Online optimization in dynamic environments: Improved regret rates for strongly convex problems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85010723223     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CDC.2016.7799379     Document Type: Conference Paper
Times cited : (311)

References (22)
  • 3
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex optimization," Operations Research Letters, vol. 31, no. 3, pp. 167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 5
    • 84859418371 scopus 로고    scopus 로고
    • Online learning and online convex optimization
    • S. Shalev-Shwartz, "Online learning and online convex optimization," Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107-194, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.4 , Issue.2 , pp. 107-194
    • Shalev-Shwartz, S.1
  • 6
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient ascent
    • M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent," in International Conference on Machine Learning, 2003.
    • (2003) International Conference on Machine Learning
    • Zinkevich, M.1
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of computer and system sciences, vol. 55, no. 1, pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • E. Hazan, A. Agarwal, and S. Kale, "Logarithmic regret algorithms for online convex optimization," Machine Learning, vol. 69, no. 2-3, pp. 169-192, 2007.
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 9
    • 84947997582 scopus 로고    scopus 로고
    • Non-stationary stochastic optimization
    • O. Besbes, Y. Gur, and A. Zeevi, "Non-stationary stochastic optimization," Operations Research, vol. 63, no. 5, pp. 1227-1244, 2015.
    • (2015) Operations Research , vol.63 , Issue.5 , pp. 1227-1244
    • Besbes, O.1    Gur, Y.2    Zeevi, A.3
  • 12
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of Fluids Engineering, vol. 82, no. 1, pp. 35-45, 1960.
    • (1960) Journal of Fluids Engineering , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1
  • 13
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • M. Herbster and M. K. Warmuth, "Tracking the best expert," Machine Learning, vol. 32, no. 2, pp. 151-178, 1998.
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 151-178
    • Herbster, M.1    Warmuth, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.