메뉴 건너뛰기




Volumn 9, Issue 4, 2015, Pages 647-662

Online convex optimization in dynamic environments

Author keywords

Dynamical Models; online Optimization; stochastic Filtering

Indexed keywords

ALGORITHMS; BIG DATA; CLUSTERING ALGORITHMS; COMPRESSED SENSING; CONVEX OPTIMIZATION; SOCIAL NETWORKING (ONLINE); STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84929315531     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2015.2404790     Document Type: Article
Times cited : (251)

References (63)
  • 1
    • 84897553108 scopus 로고    scopus 로고
    • Dynamical models and tracking regret in online convex programming
    • E. Hall and R. Willett, "Dynamical models and tracking regret in online convex programming," in Proc. Int. Conf. Mach. Learn. (ICML), 2013.
    • (2013) Proc. Int. Conf. Mach. Learn. (ICML)
    • Hall, E.1    Willett, R.2
  • 8
    • 0028448672 scopus 로고
    • Robust kalman filtering for uncertain discrete-time systems
    • Jun.
    • L. Xie, Y. C. Soh, and C. E. de Souza, "Robust Kalman filtering for uncertain discrete-time systems," IEEE Trans. Autom. Control, vol. 39, no. 6, pp. 1310-1314, Jun. 1994.
    • (1994) IEEE Trans. Autom. Control , vol.39 , Issue.6 , pp. 1310-1314
    • Xie, L.1    Soh, Y.C.2    De Souza, C.E.3
  • 9
    • 0030084185 scopus 로고    scopus 로고
    • Robust discrete-time minimum-variance filtering
    • Feb.
    • Y. Theodor and U. Shaked, "Robust discrete-time minimum-variance filtering," IEEE Trans. Signal Process., vol. 44, no. 2, pp. 181-189, Feb. 1996.
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.2 , pp. 181-189
    • Theodor, Y.1    Shaked, U.2
  • 10
    • 0032184197 scopus 로고    scopus 로고
    • Universal prediction
    • Oct.
    • N. Merhav and M. Feder, "Universal prediction," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2124-2147, Oct. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.6 , pp. 2124-2147
    • Merhav, N.1    Feder, M.2
  • 12
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex programming
    • A. Beck and M. Teboulle, "Mirror descent and nonlinear projected subgradient methods for convex programming," Operat. Res. Lett, vol. 31, pp. 167-175, 2003.
    • (2003) Operat. Res. Lett , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 13
    • 1942484421 scopus 로고    scopus 로고
    • Online convex programming and generalized infinitesimal gradient descent
    • M. Zinkevich, "Online convex programming and generalized infinitesimal gradient descent," in Proc. Int. Conf. Mach. Learning (ICML), 2003, pp. 928-936.
    • (2003) Proc. Int. Conf. Mach. Learning (ICML) , pp. 928-936
    • Zinkevich, M.1
  • 15
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data," J. Mach. Learn. Res., vol. 9, pp. 485-516, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 16
    • 77951455815 scopus 로고    scopus 로고
    • High-dimenstional ising model selection using ℓ1-regularized logistic regression
    • P. Ravikumar, M. J. Wainwright, and J. D. Lafferty, "High-dimenstional ising model selection using ℓ1-regularized logistic regression," Ann. Statist, vol. 38, pp. 1287-1319, 2010.
    • (2010) Ann. Statist , vol.38 , pp. 1287-1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 17
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. Candès, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 18
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Jun.
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput, vol. 15, pp. 1373-1396, Jun. 2003.
    • (2003) Neural Comput , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 19
    • 77953779332 scopus 로고    scopus 로고
    • Online adaptive estimation of sparse signals: Where RLS meets the 11-norm
    • Jul.
    • D. Angelosante, J. A. Bazerque, and G. B. Giannakis, "Online adaptive estimation of sparse signals: Where RLS meets the 11-norm," IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3436-3447, Jul. 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.7 , pp. 3436-3447
    • Angelosante, D.1    Bazerque, J.A.2    Giannakis, G.B.3
  • 20
    • 0042496213 scopus 로고    scopus 로고
    • Tracking the best linear predictor
    • M. Herbster and M. K. Warmuth, "Tracking the best linear predictor," J. Mach. Learn. Res, vol. 35, no. 3, pp. 281-309, 2001.
    • (2001) J. Mach. Learn. Res , vol.35 , Issue.3 , pp. 281-309
    • Herbster, M.1    Warmuth, M.K.2
  • 22
    • 35148838877 scopus 로고
    • The weighted majority algorithm
    • N. Littlestone and M. K. Warmuth, "The weighted majority algorithm," Inf. Comput, vol. 108, no. 2, pp. 212-261, 1994.
    • (1994) Inf. Comput , vol.108 , Issue.2 , pp. 212-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 23
    • 71149091248 scopus 로고    scopus 로고
    • Efficient learning algorithms for changing environments
    • E. Hazan and C. Seshadhri, "Efficient learning algorithms for changing environments," in Proc. Int. Conf. Mach. Learn. (ICML), 2009, pp. 393-400.
    • (2009) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 393-400
    • Hazan, E.1    Seshadhri, C.2
  • 24
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • L. M. Bregman, "The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming," Comput. Math. Math. Phys, vol. 7, pp. 200-217, 1967.
    • (1967) Comput. Math. Math. Phys , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 27
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization," J. Mach. Learn. Res, vol. 11, pp. 2543-2596, 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 28
    • 64149115569 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • J. Langford, L. Li, and T. Zhang, "Sparse online learning via truncated gradient," J. Mach. Learn. Res, vol. 10, pp. 777-801, 2009.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 777-801
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 30
    • 0003807773 scopus 로고    scopus 로고
    • Upper Saddle River, NJ, USA: Prentice-Hall
    • S. Haykin, Adaptive filter theory. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
    • (2002) Adaptive Filter Theory
    • Haykin, S.1
  • 32
    • 0032137328 scopus 로고    scopus 로고
    • Tracking the best expert
    • M. Herbster and M. K. Warmuth, "Tracking the best expert," Mach. Learn., vol. 32, pp. 151-178, 1998.
    • (1998) Mach. Learn. , vol.32 , pp. 151-178
    • Herbster, M.1    Warmuth, M.K.2
  • 35
    • 84867973521 scopus 로고    scopus 로고
    • Efficient tracking of large classes of experts
    • Nov.
    • A. Gyorgy, T. Linder, and G. Lugosi, "Efficient tracking of large classes of experts," IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6709-6725, Nov. 2012.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , Issue.11 , pp. 6709-6725
    • Gyorgy, A.1    Linder, T.2    Lugosi, G.3
  • 39
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Dec.
    • M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," Foundat. Trends Mach. Learn., vol. 1, pp. 1-305, Dec. 2008.
    • (2008) Foundat. Trends Mach. Learn. , vol.1 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 40
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • K. S. Azoury and M. K. Warmuth, "Relative loss bounds for on-line density estimation with the exponential family of distributions," Mach. Learn., vol. 43, pp. 211-246, 2001.
    • (2001) Mach. Learn. , vol.43 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 41
    • 84863971090 scopus 로고    scopus 로고
    • Sequential anomaly detection in the presence of noise and limited feedback
    • Aug.
    • M. Raginsky, R. Willett, C. Horn, J. Silva, and R. Marcia, "Sequential anomaly detection in the presence of noise and limited feedback," IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5544-5562, Aug. 2012.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , Issue.8 , pp. 5544-5562
    • Raginsky, M.1    Willett, R.2    Horn, C.3    Silva, J.4    Marcia, R.5
  • 44
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, "Robust stochastic approximation approach to stochastic programming," SIAM J. Optim, vol. 19, no. 4, pp. 1574-1609, 2009.
    • (2009) SIAM J. Optim , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 48
    • 84862981945 scopus 로고    scopus 로고
    • Compressive fluorescence microscopy for biological and hyperspectral imaging
    • V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, "Compressive fluorescence microscopy for biological and hyperspectral imaging," Proc. Nat. Acad. Sci., vol. 109, no. 26, pp. E1679-E1687, 2012.
    • (2012) Proc. Nat. Acad. Sci. , vol.109 , Issue.26 , pp. E1679-E1687
    • Studer, V.1    Bobin, J.2    Chahid, M.3    Mousavi, H.S.4    Candes, E.5    Dahan, M.6
  • 50
    • 70449659764 scopus 로고    scopus 로고
    • A multiscale framework for compressive sensing of video
    • Chicago, IL, USA, May
    • J. Y. Park and M. B. Wakin, "A multiscale framework for compressive sensing of video," in Picture Coding Symp. (PCS), Chicago, IL, USA, May 2009.
    • (2009) Picture Coding Symp. (PCS)
    • Park, J.Y.1    Wakin, M.B.2
  • 53
    • 77954588549 scopus 로고    scopus 로고
    • Modified-CS: Modifying compressive sensing for problems with partially known support
    • Sep.
    • N. Vaswani and W. Lu, "Modified-CS: Modifying compressive sensing for problems with partially known support," IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4595-4607, Sep. 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.9 , pp. 4595-4607
    • Vaswani, N.1    Lu, W.2
  • 56
    • 84877732166 scopus 로고    scopus 로고
    • Modelling reciprocating relationships with hawkes processes
    • C. Blundell, K. A. Heller, and J. M. Beck, "Modelling reciprocating relationships with Hawkes processes," in Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Blundell, C.1    Heller, K.A.2    Beck, J.M.3
  • 58
    • 80055091138 scopus 로고    scopus 로고
    • Reconstruction of missing data in social networks based on temporal patterns of interactions
    • A. Stomakhin, M. B. Short, and A. Bertozzi, "Reconstruction of missing data in social networks based on temporal patterns of interactions," Inverse Problems, vol. 27, no. 11, p. 115013, 2011.
    • (2011) Inverse Problems , vol.27 , Issue.11 , pp. 115013
    • Stomakhin, A.1    Short, M.B.2    Bertozzi, A.3
  • 59
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-The-art and future challenges
    • E. N. Brown, R. E. Kass, and P. P. Mitra, "Multiple neural spike train data analysis: state-of-the-art and future challenges," Nature Neurosci., vol. 7, no. 5, pp. 456-461, 2004.
    • (2004) Nature Neurosci. , vol.7 , Issue.5 , pp. 456-461
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 60
    • 22944464423 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for e-mail classification research
    • B. Klimt and Y. Yang, "The enron corpus: a new dataset for e-mail classification research," in Proc. Eur. Conf. Mach. Learn. (ECML), 2004, pp. 217-226.
    • (2004) Proc. Eur. Conf. Mach. Learn. (ECML) , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 61
    • 84929361826 scopus 로고    scopus 로고
    • Jun. 3. [Online]
    • Jun. 3, 2010. [Online]. Available: http://www.pbs.org/wgbh/pages/frontline/shows/blackout/california/timeline.html
    • (2010)
  • 62
    • 4143087316 scopus 로고    scopus 로고
    • Enron faces collapse as dynegy bolts and stock price, credit standing dive
    • R. Smith and J. Emswhwiller, "Enron faces collapse as Dynegy bolts and stock price, credit standing dive," Wall Street J, 2001.
    • (2001) Wall Street J
    • Smith, R.1    Emswhwiller, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.