-
1
-
-
70349292074
-
Beating the adaptive bandit with high probability
-
EECS Department, University of California, Berkeley, Jan
-
J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. Technical Report UCB/EECS-2009-10, EECS Department, University of California, Berkeley, Jan 2009.
-
(2009)
Technical Report UCB/EECS-2009-10
-
-
Abernethy, J.1
Rakhlin, A.2
-
3
-
-
84862535425
-
Interior-point methods for full-information and bandit online learning
-
IEEE Transactions on
-
J.D. Abernethy, E. Hazan, and A. Rakhlin. Interior-point methods for full-information and bandit online learning. Information Theory, IEEE Transactions on, 58(7): 4164-4175, 2012.
-
(2012)
Information Theory
, vol.58
, Issue.7
, pp. 4164-4175
-
-
Abernethy, J.D.1
Hazan, E.2
Rakhlin, A.3
-
4
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1): 48-77, 2003.
-
(2003)
SIAM J. Comput.
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
6
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3): 167-175, 2003.
-
(2003)
Operations Research Letters
, vol.31
, Issue.3
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
8
-
-
33847624608
-
Improved second-order bounds for prediction with expert advice
-
N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with expert advice. Machine Learning, 66(2): 321-352, 2007.
-
(2007)
Machine Learning
, vol.66
, Issue.2
, pp. 321-352
-
-
Cesa-Bianchi, N.1
Mansour, Y.2
Stoltz, G.3
-
9
-
-
84898051694
-
Online optimization with gradual variations
-
C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online optimization with gradual variations. In COLT, 2012.
-
(2012)
COLT
-
-
Chiang, C.-K.1
Yang, T.2
Lee, C.-J.3
Mahdavi, M.4
Lu, C.-J.5
Jin, R.6
Zhu, S.7
-
11
-
-
77955655739
-
Extracting certainty from uncertainty: Regret bounded by variation in costs
-
E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs. Machine learning, 80(2): 165-188, 2010.
-
(2010)
Machine Learning
, vol.80
, Issue.2
, pp. 165-188
-
-
Hazan, E.1
Kale, S.2
-
12
-
-
58149374383
-
Interior-point methods for optimization
-
A.S. Nemirovski and M.J. Todd. Interior-point methods for optimization. Acta Numerica, 17(1): 191-234, 2008.
-
(2008)
Acta Numerica
, vol.17
, Issue.1
, pp. 191-234
-
-
Nemirovski, A.S.1
Todd, M.J.2
-
14
-
-
85162027798
-
Online learning: Random averages, combinatorial parameters, and learnability
-
A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Random averages, combinatorial parameters, and learnability. In NIPS, 2010. Available at http://arXiv.org/abs/1006.1138.
-
(2010)
NIPS
-
-
Rakhlin, A.1
Sridharan, K.2
Tewari, A.3
-
15
-
-
85162441071
-
Online learning: Stochastic, constrained, and smoothed adversaries
-
A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Stochastic, constrained, and smoothed adversaries. In NIPS, 2011. Available at http://arXiv.org/abs/1104.5070.
-
(2011)
NIPS
-
-
Rakhlin, A.1
Sridharan, K.2
Tewari, A.3
|