-
1
-
-
84891392470
-
2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution
-
2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl. Mater Interfaces 5:24 (2013), 12794–12798.
-
(2013)
ACS Appl. Mater Interfaces
, vol.5
, Issue.24
, pp. 12794-12798
-
-
Yan, Y.1
-
2
-
-
0033618581
-
A realizable renewable energy future
-
[2] Turner, J.A., A realizable renewable energy future. Science 285:5428 (1999), 687–689.
-
(1999)
Science
, vol.285
, Issue.5428
, pp. 687-689
-
-
Turner, J.A.1
-
3
-
-
84900013035
-
Ultrahigh hydrogen evolution performance of under-water superaerophobic MoS(2) nanostructured electrodes
-
2615
-
[3] Lu, Z., et al. Ultrahigh hydrogen evolution performance of under-water superaerophobic MoS(2) nanostructured electrodes. Adv. Mater. 26:17 (2014), 2683–2687 2615.
-
(2014)
Adv. Mater.
, vol.26
, Issue.17
, pp. 2683-2687
-
-
Lu, Z.1
-
4
-
-
84961118615
-
A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction
-
[4] Liu, Y., et al. A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J. Mater. Chem. A 4:12 (2016), 4472–4478.
-
(2016)
J. Mater. Chem. A
, vol.4
, Issue.12
, pp. 4472-4478
-
-
Liu, Y.1
-
5
-
-
78449291387
-
Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks
-
[5] Johnson, J.L., et al. Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22:43 (2010), 4877–4880.
-
(2010)
Adv. Mater.
, vol.22
, Issue.43
, pp. 4877-4880
-
-
Johnson, J.L.1
-
6
-
-
79551574207
-
The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition
-
[6] Seo, M.H., et al. The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition. Electrochem. Commun. 13:2 (2011), 182–185.
-
(2011)
Electrochem. Commun.
, vol.13
, Issue.2
, pp. 182-185
-
-
Seo, M.H.1
-
7
-
-
84883854631
-
Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
-
[7] Chen, W.F., Muckerman, J.T., Fujita, E., Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. (Camb.) 49:79 (2013), 8896–8909.
-
(2013)
Chem. Commun. (Camb.)
, vol.49
, Issue.79
, pp. 8896-8909
-
-
Chen, W.F.1
Muckerman, J.T.2
Fujita, E.3
-
8
-
-
84948680883
-
Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting
-
[8] Wang, F., et al. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 7:47 (2015), 19764–19788.
-
(2015)
Nanoscale
, vol.7
, Issue.47
, pp. 19764-19788
-
-
Wang, F.1
-
10
-
-
80053312320
-
Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
-
[10] Merki, D., Hu, X., Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci., 4(10), 2011, p3878.
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.10
, pp. p3878
-
-
Merki, D.1
Hu, X.2
-
11
-
-
84958087954
-
2 nanoparticles as highly active hydrogen evolution electrocatalysts
-
2 nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Adv. 6:20 (2016), 16656–16661.
-
(2016)
RSC Adv.
, vol.6
, Issue.20
, pp. 16656-16661
-
-
Wang, D.1
-
12
-
-
84935895369
-
2
-
2 . J. Mater. Chem. A 3:24 (2015), 13050–13056.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.24
, pp. 13050-13056
-
-
Wu, Z.1
-
14
-
-
84941137405
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 53:47 (2014), 12794–12798.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, Issue.47
, pp. 12794-12798
-
-
Hu, Z.1
-
15
-
-
84898006282
-
2 and graphene as an active catalyst for hydrogen evolution reaction
-
2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 26:7 (2014), 2344–2353.
-
(2014)
Chem. Mater.
, vol.26
, Issue.7
, pp. 2344-2353
-
-
Zheng, X.1
-
16
-
-
79955891162
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133:19 (2011), 7296–7299.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.19
, pp. 7296-7299
-
-
Li, Y.1
-
17
-
-
84923241380
-
2 nanoparticles on carbon nanofiber foam
-
2 nanoparticles on carbon nanofiber foam. J. Mater. Chem. A 3:9 (2015), 5041–5046.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.9
, pp. 5041-5046
-
-
Guo, X.1
-
18
-
-
85027930794
-
2 ) nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties
-
2 ) nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Ed. Engl. 54:25 (2015), 7395–7398.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, Issue.25
, pp. 7395-7398
-
-
Yu, X.Y.1
-
19
-
-
84893323479
-
2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction
-
2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 6:4 (2014), 2131–2136.
-
(2014)
Nanoscale
, vol.6
, Issue.4
, pp. 2131-2136
-
-
Chung, D.Y.1
-
20
-
-
84929303457
-
2 /rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction
-
2 /rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Power Sources 292 (2015), 15–22.
-
(2015)
J. Power Sources
, vol.292
, pp. 15-22
-
-
Li, F.1
-
21
-
-
84874965738
-
2 films with vertically aligned layers
-
2 films with vertically aligned layers. Nano Lett. 13:3 (2013), 1341–1347.
-
(2013)
Nano Lett.
, vol.13
, Issue.3
, pp. 1341-1347
-
-
Kong, D.1
-
22
-
-
84921306509
-
2 composites for highly enhanced photocatalytic properties
-
2 composites for highly enhanced photocatalytic properties. Chem. Commun. (Camb.) 51:9 (2015), 1709–1712.
-
(2015)
Chem. Commun. (Camb.)
, vol.51
, Issue.9
, pp. 1709-1712
-
-
Gao, W.1
-
23
-
-
84905706981
-
Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection
-
[23] Wang, Y., Ni, Y., Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal. Chem. 86:15 (2014), 7463–7470.
-
(2014)
Anal. Chem.
, vol.86
, Issue.15
, pp. 7463-7470
-
-
Wang, Y.1
Ni, Y.2
-
24
-
-
84946064075
-
2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction
-
2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. J. Mater. Chem. A 3:43 (2015), 21772–21778.
-
(2015)
J. Mater. Chem. A
, vol.3
, Issue.43
, pp. 21772-21778
-
-
Li, F.1
-
25
-
-
84971569615
-
2 quantum dots for gas sensing
-
2 quantum dots for gas sensing. J. Mater. Chem. A 4:21 (2016), 8198–8203.
-
(2016)
J. Mater. Chem. A
, vol.4
, Issue.21
, pp. 8198-8203
-
-
Yue, N.1
-
26
-
-
84973366557
-
2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance
-
2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 6:58 (2016), 52611–52619.
-
(2016)
RSC Adv.
, vol.6
, Issue.58
, pp. 52611-52619
-
-
Jin, X.1
-
28
-
-
59949098337
-
The electronic properties of graphene
-
[28] Castro Neto, A.H., et al. The electronic properties of graphene. Rev. Mod. Phys. 81:1 (2009), 109–162.
-
(2009)
Rev. Mod. Phys.
, vol.81
, Issue.1
, pp. 109-162
-
-
Castro Neto, A.H.1
-
29
-
-
70349668809
-
Graphene: the new two-dimensional nanomaterial
-
[29] Rao, C.N., et al. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl. 48:42 (2009), 7752–7777.
-
(2009)
Angew. Chem. Int. Ed. Engl.
, vol.48
, Issue.42
, pp. 7752-7777
-
-
Rao, C.N.1
-
30
-
-
84969217680
-
One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries
-
[30] Xing, Z., et al. One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep., 6, 2016, 26146.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26146
-
-
Xing, Z.1
-
31
-
-
0037399517
-
2 nanowires
-
2 nanowires. J. Cryst. Growth 250:3-4 (2003), 418–422.
-
(2003)
J. Cryst. Growth
, vol.250
, Issue.3-4
, pp. 418-422
-
-
Li, W.-J.1
-
32
-
-
84985032710
-
2 heterostructure composites with improved visible light catalytic activity
-
2 heterostructure composites with improved visible light catalytic activity. New J. Chem. 40:9 (2016), 8123–8130.
-
(2016)
New J. Chem.
, vol.40
, Issue.9
, pp. 8123-8130
-
-
Ali, M.M.1
Sandhya, K.N.Y.2
-
33
-
-
84893935222
-
Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition
-
[33] Song, I., et al. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem. Int. Ed. Engl. 53:5 (2014), 1266–1269.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, Issue.5
, pp. 1266-1269
-
-
Song, I.1
-
34
-
-
84860329324
-
2 atomic layers with chemical vapor deposition
-
2 atomic layers with chemical vapor deposition. Adv. Mater. 24:17 (2012), 2320–2325.
-
(2012)
Adv. Mater.
, vol.24
, Issue.17
, pp. 2320-2325
-
-
Lee, Y.H.1
-
35
-
-
84959932053
-
Catalysis with two-dimensional materials and their heterostructures
-
[35] Deng, D., et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11:3 (2016), 218–230.
-
(2016)
Nat. Nanotechnol.
, vol.11
, Issue.3
, pp. 218-230
-
-
Deng, D.1
-
36
-
-
84977111504
-
Fabrication of water-stable silk fibroin scaffolds through self-assembly of proteins
-
[36] Yao, D., Liu, H., Fan, Y., Fabrication of water-stable silk fibroin scaffolds through self-assembly of proteins. RSC Adv. 6:66 (2016), 61402–61409.
-
(2016)
RSC Adv.
, vol.6
, Issue.66
, pp. 61402-61409
-
-
Yao, D.1
Liu, H.2
Fan, Y.3
-
37
-
-
84858015945
-
Effect of enantiomeric ratio and preparation method on proline crystal form
-
[37] Berendt, R.T., Munson, E.J., Effect of enantiomeric ratio and preparation method on proline crystal form. CrystEngComm 14:7 (2012), 2479–2488.
-
(2012)
CrystEngComm
, vol.14
, Issue.7
, pp. 2479-2488
-
-
Berendt, R.T.1
Munson, E.J.2
-
38
-
-
84947806064
-
Design of isolated iron species for Fenton reactions: lyophilization beats calcination treatment
-
[38] Zhang, L., et al. Design of isolated iron species for Fenton reactions: lyophilization beats calcination treatment. Chem. Commun. (Camb.) 51:95 (2015), 16936–16939.
-
(2015)
Chem. Commun. (Camb.)
, vol.51
, Issue.95
, pp. 16936-16939
-
-
Zhang, L.1
-
39
-
-
85027941070
-
2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction
-
2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 25:7 (2015), 1127–1136.
-
(2015)
Adv. Funct. Mater.
, vol.25
, Issue.7
, pp. 1127-1136
-
-
Xu, S.1
Li, D.2
Wu, P.3
-
40
-
-
84910622064
-
2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution
-
2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J. Power Sources 275 (2015), 588–594.
-
(2015)
J. Power Sources
, vol.275
, pp. 588-594
-
-
Liu, N.1
-
42
-
-
84866130770
-
Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
-
[42] Merki, D., et al. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci., 3(8), 2012, 2515.
-
(2012)
Chem. Sci.
, vol.3
, Issue.8
, pp. 2515
-
-
Merki, D.1
-
43
-
-
84949115415
-
4 -carbon porous nanowire arrays as reversible oxygen evolution electrodes
-
4 -carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136:39 (2014), 13925–13931.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, Issue.39
, pp. 13925-13931
-
-
Ma, T.Y.1
-
44
-
-
84992744107
-
2 P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting
-
2 P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4:40 (2016), 15501–15510.
-
(2016)
J. Mater. Chem. A
, vol.4
, Issue.40
, pp. 15501-15510
-
-
Li, X.1
-
45
-
-
34447326950
-
2 evolution from MoS2 nanocatalysts
-
2 evolution from MoS2 nanocatalysts. Science 317:5834 (2007), 100–102.
-
(2007)
Science
, vol.317
, Issue.5834
, pp. 100-102
-
-
Jaramillo, T.F.1
-
46
-
-
84900453050
-
2 nanoflowers as highly efficient hydrogen evolution reaction catalysts
-
2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J. Power Sources 264 (2014), 229–234.
-
(2014)
J. Power Sources
, vol.264
, pp. 229-234
-
-
Wang, D.1
-
47
-
-
84899818281
-
Graphene film-confined molybdenum sulfide nanoparticles: facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst
-
[47] Pu, Z., et al. Graphene film-confined molybdenum sulfide nanoparticles: facile one-step electrodeposition preparation and application as a highly active hydrogen evolution reaction electrocatalyst. J. Power Sources 263 (2014), 181–185.
-
(2014)
J. Power Sources
, vol.263
, pp. 181-185
-
-
Pu, Z.1
-
48
-
-
84882730767
-
Enhancement of hydrogen evolution reaction on platinum cathode by proton carriers
-
[48] Creţu, R., Kellenberger, A., Vaszilcsin, N., Enhancement of hydrogen evolution reaction on platinum cathode by proton carriers. Int. J. Hydrogen Energy 38:27 (2013), 11685–11694.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, Issue.27
, pp. 11685-11694
-
-
Creţu, R.1
Kellenberger, A.2
Vaszilcsin, N.3
|