-
1
-
-
84938937601
-
DRC3 connects the N-DRC to dynein g to regulate flagellar waveform
-
Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, Witman GB. 2015. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol Biol Cell 26: 2788–2800.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 2788-2800
-
-
Awata, J.1
Song, K.2
Lin, J.3
King, S.M.4
Sanderson, M.J.5
Nicastro, D.6
Witman, G.B.7
-
2
-
-
84904548401
-
Exploring the evolutionary history of centrosomes
-
Azimzadeh, J. 2014. Exploring the evolutionary history of centrosomes. Philos Trans R Soc Lond B Biol Sci 369: 20130453.
-
(2014)
Philos Trans R Soc Lond B Biol Sci
, vol.369
-
-
Azimzadeh, J.1
-
4
-
-
84902938564
-
Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks
-
Barker, AR, Renzaglia KS, Fry K, Dawe HR. 2014. Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks. BMC Genomics 15: 531.
-
(2014)
BMC Genomics
, vol.15
, pp. 531
-
-
Barker, A.R.1
Renzaglia, K.S.2
Fry, K.3
Dawe, H.R.4
-
5
-
-
84876552918
-
The, N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes
-
Bower, R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. 2013. The, N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 24: 1134–1152.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 1134-1152
-
-
Bower, R.1
Tritschler, D.2
Vanderwaal, K.3
Perrone, C.A.4
Mueller, J.5
Fox, L.6
Sale, W.S.7
Porter, M.E.8
-
6
-
-
33748759561
-
Conserved and specific functions of axoneme components in trypanosome motility
-
Branche, C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P. 2006. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119: 3443–3455.
-
(2006)
J Cell Sci
, vol.119
, pp. 3443-3455
-
-
Branche, C.1
Kohl, L.2
Toutirais, G.3
Buisson, J.4
Cosson, J.5
Bastin, P.6
-
7
-
-
4143126756
-
More than one way to build a flagellum: Comparative genomics of parasitic protozoa
-
Briggs, LJ, Davidge JA, Wickstead B, Ginger ML, Gull K. 2004. More than one way to build a flagellum: Comparative genomics of parasitic protozoa. Curr. Biol. 14: R611–R612.
-
(2004)
Curr. Biol
, vol.14
, pp. R611-R612
-
-
Briggs, L.J.1
Davidge, J.A.2
Wickstead, B.3
Ginger, M.L.4
Gull, K.5
-
8
-
-
0020047275
-
Analysis of the movement of Chlamydomonas flagella: The function of the radial-spoke system is revealed by comparison of wildtype and mutant flagella
-
Brokaw, CJ, Luck DJL, Huang B. 1982. Analysis of the movement of Chlamydomonas flagella: The function of the radial-spoke system is revealed by comparison of wildtype and mutant flagella. J Cell Biol 92: 722–732.
-
(1982)
J Cell Biol
, vol.92
, pp. 722-732
-
-
Brokaw, C.J.1
Luck, D.2
Huang, B.3
-
9
-
-
84874106817
-
Conserved structural motifs in the central pair complex of eukaryotic flagella
-
Carbajal-Gonzalez BI, Heuser T, Fu X, Lin J, Smith BW, Mitchell DR, Nicastro D. 2013. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton (Hoboken) 70: 101–120.
-
(2013)
Cytoskeleton (Hoboken)
, vol.70
, pp. 101-120
-
-
Carbajal-Gonzalez, B.I.1
Heuser, T.2
Fu, X.3
Lin, J.4
Smith, B.W.5
Mitchell, D.R.6
Nicastro, D.7
-
10
-
-
79961111227
-
Evolution: Tracing the origins of centrioles, cilia, and flagella
-
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. 2011. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194: 165–175.
-
(2011)
J Cell Biol
, vol.194
, pp. 165-175
-
-
Carvalho-Santos, Z.1
Azimzadeh, J.2
Pereira-Leal, J.B.3
Bettencourt-Dias, M.4
-
11
-
-
84907704636
-
Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (Animals, fungi, choanozoans) and Amoebozoa
-
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore- Donno AM, Lewis R. 2014.Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 81: 71–85.
-
(2014)
Mol Phylogenet Evol
, vol.81
, pp. 71-85
-
-
Cavalier-Smith, T.1
Chao, E.E.2
Snell, E.A.3
Berney, C.4
Fiore-Donno, A.M.5
Lewis, R.6
-
12
-
-
84954162605
-
ATP consumption of eukaryotic flagella measured at a single-cell level
-
Chen DT, Heymann M, Fraden S, Nicastro D, Dogic Z. 2015. ATP consumption of eukaryotic flagella measured at a single-cell level. Biophys J 109: 2562–2573.
-
(2015)
Biophys J
, vol.109
, pp. 2562-2573
-
-
Chen, D.T.1
Heymann, M.2
Fraden, S.3
Nicastro, D.4
Dogic, Z.5
-
13
-
-
79956030187
-
A late origin of the extant eukaryotic diversity: Divergence time estimates using rare genomic changes
-
Chernikova, D, Motamedi S, Csuros M, Koonin EV, Rogozin IB. 2011. A late origin of the extant eukaryotic diversity: Divergence time estimates using rare genomic changes. Biol Direct 6: 26.
-
(2011)
Biol Direct
, vol.6
, pp. 26
-
-
Chernikova, D.1
Motamedi, S.2
Csuros, M.3
Koonin, E.V.4
Rogozin, I.B.5
-
14
-
-
84889094538
-
Compartmentalized calcium signaling in cilia regulates intraflagellar transport
-
Collingridge, P, Brownlee C, Wheeler GL. 2013. Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr Biol 23: 2311–2318.
-
(2013)
Curr Biol
, vol.23
, pp. 2311-2318
-
-
Collingridge, P.1
Brownlee, C.2
Wheeler, G.L.3
-
15
-
-
84889023695
-
Chlamydomonas, ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly
-
Dean, AB, Mitchell DR. 2013. Chlamydomonas, ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly. Mol Biol Cell 24: 3689–3696.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 3689-3696
-
-
Dean, A.B.1
Mitchell, D.R.2
-
16
-
-
84944037666
-
Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction ofODA5 and ODA10 in a complex
-
Dean, AB, Mitchell DR. 2015. Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction ofODA5 and ODA10 in a complex. Mol Biol Cell 26: 3596–3605.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 3596-3605
-
-
Dean, A.B.1
Mitchell, D.R.2
-
17
-
-
54749133489
-
A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila
-
Dobbelaere, J, Josue F, Suijkerbuijk S, Baum B, Tapon N, Raff J. 2008. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol 6: e224.
-
(2008)
Plos Biol
, vol.6
-
-
Dobbelaere, J.1
Josue, F.2
Suijkerbuijk, S.3
Baum, B.4
Tapon, N.5
Raff, J.6
-
18
-
-
0347364717
-
Long-lost relatives reappear: Identification of new members of the tubulin superfamily
-
Dutcher, SK. 2003. Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 6: 634–640.
-
(2003)
Curr Opin Microbiol
, vol.6
, pp. 634-640
-
-
Dutcher, S.K.1
-
19
-
-
0036854326
-
1-Tubulin is an essential component of the centriole
-
Dutcher, SK, Morrissette NS, Preble AM, Rackley C, Stanga J. 2002. 1-Tubulin is an essential component of the centriole. Mol Biol Cell 13: 3859–3869.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 3859-3869
-
-
Dutcher, S.K.1
Morrissette, N.S.2
Preble, A.M.3
Rackley, C.4
Stanga, J.5
-
20
-
-
67349218869
-
The, RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus
-
Elias, M, Archibald JM. 2009. The, RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus. Gene 442: 63–72.
-
(2009)
Gene
, vol.442
, pp. 63-72
-
-
Elias, M.1
Archibald, J.M.2
-
21
-
-
79955162632
-
Pkd1l1 establishes left–right asymmetry and physically interacts with Pkd2
-
Field, S, Riley KL, Grimes DT, Hilton H, Simon M, Powles- Glover N, Siggers P, Bogani D, Greenfield A, Norris DP. 2011. Pkd1l1 establishes left–right asymmetry and physically interacts with Pkd2. Development 138: 1131–1142.
-
(2011)
Development
, vol.138
, pp. 1131-1142
-
-
Field, S.1
Riley, K.L.2
Grimes, D.T.3
Hilton, H.4
Simon, M.5
Powles-Glover, N.6
Siggers, P.7
Bogani, D.8
Greenfield, A.9
Norris, D.P.10
-
22
-
-
84930359427
-
Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family
-
Findeisen, P, Muhlhausen S, Dempewolf S, Hertzog J, Zietlow A, Carlomagno T, Kollmar M. 2014. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 6: 2274–2288.
-
(2014)
Genome Biol Evol
, vol.6
, pp. 2274-2288
-
-
Findeisen, P.1
Muhlhausen, S.2
Dempewolf, S.3
Hertzog, J.4
Zietlow, A.5
Carlomagno, T.6
Kollmar, M.7
-
23
-
-
84896544470
-
Proximity interactions among centrosome components identify regulators of centriole duplication
-
Firat-Karalar EN, Rauniyar N, Yates JR III, Stearns T. 2014. Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24: 664–670.
-
(2014)
Curr Biol
, vol.24
, pp. 664-670
-
-
Firat-Karalar, E.N.1
Rauniyar, N.2
Yates, J.3
Stearns, T.4
-
24
-
-
78649756968
-
Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation
-
Fritz-Laylin LK, Cande WZ. 2010. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci 123: 4024–4031.
-
(2010)
J Cell Sci
, vol.123
, pp. 4024-4031
-
-
Fritz-Laylin, L.K.1
Cande, W.Z.2
-
25
-
-
58349119987
-
Chlamydomonas, CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion
-
Fujiu, K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K. 2009. Chlamydomonas, CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr Biol 19: 133–139.
-
(2009)
Curr Biol
, vol.19
, pp. 133-139
-
-
Fujiu, K.1
Nakayama, Y.2
Yanagisawa, A.3
Sokabe, M.4
Yoshimura, K.5
-
26
-
-
79955619821
-
Mechanoreception in motile flagella of Chlamydomonas
-
Fujiu, K, Nakayama Y, Iida H, Sokabe M, Yoshimura K. 2011. Mechanoreception in motile flagella of Chlamydomonas. Nat Cell Biol 13: 630–632.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 630-632
-
-
Fujiu, K.1
Nakayama, Y.2
Iida, H.3
Sokabe, M.4
Yoshimura, K.5
-
27
-
-
33746092106
-
Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes
-
Gadelha, C, Wickstead B, McKean PG, Gull K. 2006. Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes. J Cell Sci 119: 2405–2413.
-
(2006)
J Cell Sci
, vol.119
, pp. 2405-2413
-
-
Gadelha, C.1
Wickstead, B.2
McKean, P.G.3
Gull, K.4
-
28
-
-
85006201882
-
Basal body structure in Trichonympha
-
Guichard, P, Gonczy P. 2016. Basal body structure in Trichonympha. Cilia 5: 9.
-
(2016)
Cilia
, vol.5
, pp. 9
-
-
Guichard, P.1
Gonczy, P.2
-
29
-
-
74049111826
-
The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella
-
Heuser, T, Raytchev M, Krell J, Porter ME, Nicastro D. 2009. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187: 921–933.
-
(2009)
J Cell Biol
, vol.187
, pp. 921-933
-
-
Heuser, T.1
Raytchev, M.2
Krell, J.3
Porter, M.E.4
Nicastro, D.5
-
30
-
-
35348893241
-
Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9- fold symmetry of the centriole
-
Hiraki, M, Nakazawa Y, Kamiya R, Hirono M. 2007. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9- fold symmetry of the centriole. Curr Biol 17: 1778–1783.
-
(2007)
Curr Biol
, vol.17
, pp. 1778-1783
-
-
Hiraki, M.1
Nakazawa, Y.2
Kamiya, R.3
Hirono, M.4
-
32
-
-
84908250713
-
CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation
-
Hjeij, R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, Gabriel GC, et al. 2014. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 95: 257–274.
-
(2014)
Am J Hum Genet
, vol.95
, pp. 257-274
-
-
Hjeij, R.1
Onoufriadis, A.2
Watson, C.M.3
Slagle, C.E.4
Klena, N.T.5
Dougherty, G.W.6
Kurkowiak, M.7
Loges, N.T.8
Diggle, C.P.9
Morante, N.F.10
Gabriel, G.C.11
-
33
-
-
77951743346
-
Reconstructing the evolutionary history of the centriole from protein components
-
Hodges, ME, Scheumann N, Wickstead B, Langdale JA, Gull K. 2010. Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123: 1407–1413.
-
(2010)
J Cell Sci
, vol.123
, pp. 1407-1413
-
-
Hodges, M.E.1
Scheumann, N.2
Wickstead, B.3
Langdale, J.A.4
Gull, K.5
-
34
-
-
80054742944
-
A unified taxonomy for ciliary dyneins
-
Hom, EF, Witman GB, Harris EH, Dutcher SK, Kamiya R, Mitchell DR, Pazour GJ, Porter ME, Sale WS, Wirschell M, et al. 2011. A unified taxonomy for ciliary dyneins. Cytoskeleton 68: 555–565.
-
(2011)
Cytoskeleton
, vol.68
, pp. 555-565
-
-
Hom, E.F.1
Witman, G.B.2
Harris, E.H.3
Dutcher, S.K.4
Kamiya, R.5
Mitchell, D.R.6
Pazour, G.J.7
Porter, M.E.8
Sale, W.S.9
Wirschell, M.10
-
35
-
-
35948965967
-
Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella
-
Huang, K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL. 2007. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 179: 501–514.
-
(2007)
J Cell Biol
, vol.179
, pp. 501-514
-
-
Huang, K.1
Diener, D.R.2
Mitchell, A.3
Pazour, G.J.4
Witman, G.B.5
Rosenbaum, J.L.6
-
36
-
-
84942848271
-
Calcium sensors of ciliary outer arm dynein: Functions and phylogenetic considerations for eukaryotic evolution
-
Inaba, K. 2015. Calcium sensors of ciliary outer arm dynein: Functions and phylogenetic considerations for eukaryotic evolution. Cilia 4: 6.
-
(2015)
Cilia
, vol.4
, pp. 6
-
-
Inaba, K.1
-
37
-
-
0000138522
-
Background and mass extinctions: The alternation of macroevolutionary regimes
-
Jablonski, D. 1986. Background and mass extinctions: The alternation of macroevolutionary regimes. Science. 231: 129–133.
-
(1986)
Science
, vol.231
, pp. 129-133
-
-
Jablonski, D.1
-
38
-
-
84892447547
-
The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals
-
Jerber, J, Baas D, Soulavie F, Chhin B, Cortier E, Vesque C, Thomas J, Durand B. 2013. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum Mol Genet 23: 563–577.
-
(2013)
Hum Mol Genet
, vol.23
, pp. 563-577
-
-
Jerber, J.1
Baas, D.2
Soulavie, F.3
Chhin, B.4
Cortier, E.5
Vesque, C.6
Thomas, J.7
Durand, B.8
-
39
-
-
77955332431
-
CAMP and cGMP signaling: Sensory systems with prokaryotic roots adopted by eukaryotic cilia
-
Johnson, JL, Leroux MR. 2010. cAMP and cGMP signaling: Sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol 20: 435–444.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 435-444
-
-
Johnson, J.L.1
Leroux, M.R.2
-
40
-
-
84920994852
-
Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants
-
Kamiya, R, Yagi T. 2014. Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zoolog Sci 31: 633–644.
-
(2014)
Zoolog Sci
, vol.31
, pp. 633-644
-
-
Kamiya, R.1
Yagi, T.2
-
41
-
-
79955141781
-
Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left–right axis
-
Kamura, K, Kobayashi D, Uehara Y, Koshida S, Iijima N, Kudo A, Yokoyama T, Takeda H. 2011. Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left–right axis. Development 138: 1121–1129.
-
(2011)
Development
, vol.138
, pp. 1121-1129
-
-
Kamura, K.1
Kobayashi, D.2
Uehara, Y.3
Koshida, S.4
Iijima, N.5
Kudo, A.6
Yokoyama, T.7
Takeda, H.8
-
42
-
-
20544436245
-
Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes
-
Keller, LC, Romijn EP, Zamora I, Yates JR III, Marshall WF. 2005. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15: 1090–1098.
-
(2005)
Curr Biol
, vol.15
, pp. 1090-1098
-
-
Keller, L.C.1
Romijn, E.P.2
Zamora, I.3
Yates, J.4
Marshall, W.F.5
-
43
-
-
34548815035
-
New, Tetrahymena basal body protein components identify basal body domain structure
-
Kilburn, CL, Pearson CG, Romijn EP, Meehl JB, Giddings TH Jr, Culver BP, Yates JR III, Winey M. 2007. New, Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol 178: 905–912.
-
(2007)
J Cell Biol
, vol.178
, pp. 905-912
-
-
Kilburn, C.L.1
Pearson, C.G.2
Romijn, E.P.3
Meehl, J.B.4
Giddings, T.H.5
Culver, B.P.6
Yates, J.7
Winey, M.8
-
44
-
-
79651473154
-
Structural basis of the 9-fold symmetry of centrioles
-
Kitagawa, D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC, Fluckiger I, Gonczy P, et al. 2011. Structural basis of the 9-fold symmetry of centrioles. Cell 144: 364–375.
-
(2011)
Cell
, vol.144
, pp. 364-375
-
-
Kitagawa, D.1
Vakonakis, I.2
Olieric, N.3
Hilbert, M.4
Keller, D.5
Olieric, V.6
Bortfeld, M.7
Erat, M.C.8
Fluckiger, I.9
Gonczy, P.10
-
45
-
-
84872285578
-
Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia
-
Knowles, MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, Yin W, Berg JS, Davis SD, Dell SD, et al. 2013. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet 92: 99–106.
-
(2013)
Am J Hum Genet
, vol.92
, pp. 99-106
-
-
Knowles, M.R.1
Leigh, M.W.2
Ostrowski, L.E.3
Huang, L.4
Carson, J.L.5
Hazucha, M.J.6
Yin, W.7
Berg, J.S.8
Davis, S.D.9
Dell, S.D.10
-
46
-
-
84880916121
-
Molecular paleontology and complexity in the last eukaryotic common ancestor
-
Koumandou, VL, Wickstead B, Ginger ML, van der GM, Dacks JB, Field MC. 2013. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 48: 373–396.
-
(2013)
Crit Rev Biochem Mol Biol
, vol.48
, pp. 373-396
-
-
Koumandou, V.L.1
Wickstead, B.2
Ginger, M.L.3
Van Der, G.M.4
Dacks, J.B.5
Field, M.C.6
-
47
-
-
0030953996
-
The, Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex
-
Koutoulis, A, Pazour GJ, Wilkerson CG, Inaba K, Sheng H, Takada S, Witman GB. 1997. The, Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 137: 1069–1080.
-
(1997)
J Cell Biol
, vol.137
, pp. 1069-1080
-
-
Koutoulis, A.1
Pazour, G.J.2
Wilkerson, C.G.3
Inaba, K.4
Sheng, H.5
Takada, S.6
Witman, G.B.7
-
48
-
-
84899750737
-
Bioenergetic constraints on the evolution of complex life
-
Lane, N. 2014. Bioenergetic constraints on the evolution of complex life. Cold Spring Harb Perspect Biol 6: a015982.
-
(2014)
Cold Spring Harb Perspect Biol
, vol.6
-
-
Lane, N.1
-
49
-
-
84856411124
-
Threedimensional structure of basal body triplet revealed by electron cryo-tomography
-
Li, S, Fernandez JJ, Marshall WF, Agard DA. 2012. Threedimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31: 552–562.
-
(2012)
EMBO J
, vol.31
, pp. 552-562
-
-
Li, S.1
Fernandez, J.J.2
Marshall, W.F.3
Agard, D.A.4
-
50
-
-
84962137568
-
MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone
-
Li, C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR, Romani M, De MR, Bruel AL, Gaillard D, Doray B, et al. 2016. MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol 14: e1002416.
-
(2016)
Plos Biol
, vol.14
-
-
Li, C.1
Jensen, V.L.2
Park, K.3
Kennedy, J.4
Garcia-Gonzalo, F.R.5
Romani, M.6
De, M.R.7
Bruel, A.L.8
Gaillard, D.9
Doray, B.10
-
51
-
-
79955368025
-
Rabs and other small GTPases in ciliary transport
-
Lim, YS, Chua CE, Tang BL. 2011. Rabs and other small GTPases in ciliary transport. Biol Cell 103: 209–221.
-
(2011)
Biol Cell
, vol.103
, pp. 209-221
-
-
Lim, Y.S.1
Chua, C.E.2
Tang, B.L.3
-
52
-
-
84862828314
-
The structural heterogeneity of radial spokes in cilia and flagella is conserved
-
Lin, J, Heuser T, Carbajal-Gonzalez BI, Song K, Nicastro D. 2012. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton (Hoboken) 69: 88–100.
-
(2012)
Cytoskeleton (Hoboken)
, vol.69
, pp. 88-100
-
-
Lin, J.1
Heuser, T.2
Carbajal-Gonzalez, B.I.3
Song, K.4
Nicastro, D.5
-
53
-
-
84955417686
-
Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii
-
Lin, H, Dutcher SK. 2015. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 127: 349–386.
-
(2015)
Methods Cell Biol
, vol.127
, pp. 349-386
-
-
Lin, H.1
Dutcher, S.K.2
-
54
-
-
84947033667
-
α- and β-tubulin lattice of the axonemal microtubule doublet and binding proteins revealed by single particle cryo-electron microscopy and tomography
-
Maheshwari, A, Obbineni JM, Bui KH, Shibata K, Toyoshima YY, Ishikawa T. 2015. α- and β-tubulin lattice of the axonemal microtubule doublet and binding proteins revealed by single particle cryo-electron microscopy and tomography. Structure 23: 1584–1595.
-
(2015)
Structure
, vol.23
, pp. 1584-1595
-
-
Maheshwari, A.1
Obbineni, J.M.2
Bui, K.H.3
Shibata, K.4
Toyoshima, Y.Y.5
Ishikawa, T.6
-
55
-
-
84901439340
-
From the cytoplasm into the cilium: Bon voyage
-
Malicki, J, Avidor-Reiss T. 2014. From the cytoplasm into the cilium: Bon voyage. Organogenesis 10: 138–157.
-
(2014)
Organogenesis
, vol.10
, pp. 138-157
-
-
Malicki, J.1
Avidor-Reiss, T.2
-
57
-
-
0020332948
-
Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis
-
Melkonian, M, Robenek H, Rassat J. 1982. Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. J Cell Sci 55: 115–135.
-
(1982)
J Cell Sci
, vol.55
, pp. 115-135
-
-
Melkonian, M.1
Robenek, H.2
Rassat, J.3
-
58
-
-
0141841624
-
Orientation of the central pair complex during flagellar bend formation in Chlamydomonas
-
Mitchell, DR. 2003. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. Cell Motil Cytoskeleton 56: 120–129.
-
(2003)
Cell Motil Cytoskeleton
, vol.56
, pp. 120-129
-
-
Mitchell, D.R.1
-
59
-
-
4444224020
-
Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella
-
Mitchell, DR, Nakatsugawa M. 2004. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. J Cell Biol 166: 709–715.
-
(2004)
J Cell Biol
, vol.166
, pp. 709-715
-
-
Mitchell, D.R.1
Nakatsugawa, M.2
-
60
-
-
26244462476
-
ATP production in Chlamydomonas reinhardtii flagella by glycotytic enzymes
-
Mitchell, BF, Pedersen LB, Feely M, Rosenbaum JL, Mitchell DR. 2005. ATP production in Chlamydomonas reinhardtii flagella by glycotytic enzymes. Mol Biol Cell 16: 4509–4518.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 4509-4518
-
-
Mitchell, B.F.1
Pedersen, L.B.2
Feely, M.3
Rosenbaum, J.L.4
Mitchell, D.R.5
-
61
-
-
3242759921
-
Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement
-
Mukai, C, Okuno M. 2004. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 71: 540–547.
-
(2004)
Biol Reprod
, vol.71
, pp. 540-547
-
-
Mukai, C.1
Okuno, M.2
-
62
-
-
0037317302
-
Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells
-
Nauli, SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, et al. 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33: 129–137.
-
(2003)
Nat Genet
, vol.33
, pp. 129-137
-
-
Nauli, S.M.1
Alenghat, F.J.2
Luo, Y.3
Williams, E.4
Vassilev, P.5
Li, X.6
Elia, A.E.7
Lu, W.8
Brown, E.M.9
Quinn, S.J.10
-
63
-
-
33747598723
-
The molecular architecture of axonemes revealed by cryoelectron tomography
-
Nicastro, D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR. 2006. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313: 944–948.
-
(2006)
Science
, vol.313
, pp. 944-948
-
-
Nicastro, D.1
Schwartz, C.2
Pierson, J.3
Gaudette, R.4
Porter, M.E.5
McIntosh, J.R.6
-
64
-
-
80054795016
-
Cryo-electron tomography reveals conserved features of doublet microtubules in flagella
-
Nicastro, D, Fu X, Heuser T, Tso A, Porter ME, Linck RW. 2011. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci 108: E845–E853.
-
(2011)
Proc Natl Acad Sci
, vol.108
, pp. E845-E853
-
-
Nicastro, D.1
Fu, X.2
Heuser, T.3
Tso, A.4
Porter, M.E.5
Linck, R.W.6
-
65
-
-
0035745332
-
ATP-regenerating system in the cilia of Paramecium caudatum
-
Noguchi, M, Sawadas T, Akazawa T. 2001. ATP-regenerating system in the cilia of Paramecium caudatum. J Exp Biol 204: 1063–1071.
-
(2001)
J Exp Biol
, vol.204
, pp. 1063-1071
-
-
Noguchi, M.1
Sawadas, T.2
Akazawa, T.3
-
66
-
-
84895754343
-
Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity
-
Oda, T, Yanagisawa H, Yagi T, Kikkawa M. 2014. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. J Cell Bio. 204: 807–819.
-
(2014)
J Cell Bio
, vol.204
, pp. 807-819
-
-
Oda, T.1
Yanagisawa, H.2
Yagi, T.3
Kikkawa, M.4
-
67
-
-
84920971273
-
Detailed structural and biochemical characterization of the nexin-dynein regulatory complex
-
Oda, T, Yanagisawa H, Kikkawa M. 2015. Detailed structural and biochemical characterization of the nexin-dynein regulatory complex. Mol Biol Cell 26: 294–304.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 294-304
-
-
Oda, T.1
Yanagisawa, H.2
Kikkawa, M.3
-
68
-
-
84952720501
-
Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex
-
Olbrich, H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, Philipsen M, Wallmeier J, Pennekamp P, Menchen T, et al. 2015. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet 97: 546–554.
-
(2015)
Am J Hum Genet
, vol.97
, pp. 546-554
-
-
Olbrich, H.1
Cremers, C.2
Loges, N.T.3
Werner, C.4
Nielsen, K.G.5
Marthin, J.K.6
Philipsen, M.7
Wallmeier, J.8
Pennekamp, P.9
Menchen, T.10
-
69
-
-
0032920554
-
Rotation of the central pair microtubules in eukaryotic flagella
-
Omoto, CK, Gibbons IR, Kamiya R, Shingyoji C, Takahashi K, Witman GB. 1999. Rotation of the central pair microtubules in eukaryotic flagella. Mol Biol Cell 10: 1–4.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1-4
-
-
Omoto, C.K.1
Gibbons, I.R.2
Kamiya, R.3
Shingyoji, C.4
Takahashi, K.5
Witman, G.B.6
-
70
-
-
84872342461
-
Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia
-
Onoufriadis, A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, et al. 2013. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 92: 88–98.
-
(2013)
Am J Hum Genet
, vol.92
, pp. 88-98
-
-
Onoufriadis, A.1
Paff, T.2
Antony, D.3
Shoemark, A.4
Micha, D.5
Kuyt, B.6
Schmidts, M.7
Petridi, S.8
Dankert-Roelse, J.E.9
Haarman, E.G.10
-
71
-
-
84941662598
-
The flagellar arginine kinase in Trypanosoma brucei is important for infection in tsetse flies
-
Ooi, CP, Rotureau B, Gribaldo S, Georgikou C, Julkowska D, Blisnick T, Perrot S, Subota I, Bastin P. 2015. The flagellar arginine kinase in Trypanosoma brucei is important for infection in tsetse flies. PLoS ONE 10: e0133676.
-
(2015)
Plos ONE
, vol.10
-
-
Ooi, C.P.1
Rotureau, B.2
Gribaldo, S.3
Georgikou, C.4
Julkowska, D.5
Blisnick, T.6
Perrot, S.7
Subota, I.8
Bastin, P.9
-
72
-
-
84865311801
-
Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure
-
O’Toole ET, Giddings TH Jr., Porter ME, Ostrowski LE. 2012. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 69: 577–590.
-
(2012)
Cytoskeleton (Hoboken)
, vol.69
, pp. 577-590
-
-
O’Toole, E.T.1
Giddings, T.H.2
Porter, M.E.3
Ostrowski, L.E.4
-
73
-
-
84872267078
-
Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts
-
Paps, J, Medina-Chacon LA, Marshall W, Suga H, Ruiz-Trillo I. 2013. Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164: 2–12.
-
(2013)
Protist
, vol.164
, pp. 2-12
-
-
Paps, J.1
Medina-Chacon, L.A.2
Marshall, W.3
Suga, H.4
Ruiz-Trillo, I.5
-
74
-
-
80052019696
-
Estimating the timing of early eukaryotic diversification with multigene molecular clocks
-
Parfrey, LW, Lahr DJ, Knoll AH, Katz LA. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 108: 13624–13629.
-
(2011)
Proc Natl Acad Sci
, vol.108
, pp. 13624-13629
-
-
Parfrey, L.W.1
Lahr, D.J.2
Knoll, A.H.3
Katz, L.A.4
-
75
-
-
84883382401
-
WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia
-
Patel-King RS, Gilberti RM, Hom EF, King SM. 2013. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 24: 2668–2677.
-
(2013)
Mol Biol Cell
, vol.24
, pp. 2668-2677
-
-
Patel-King, R.S.1
Gilberti, R.M.2
Hom, E.F.3
King, S.M.4
-
76
-
-
84860570233
-
Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins
-
Pigino, G, Maheshwari A, Bui KH, Shingyoji C, Kamimura S, Ishikawa T. 2012. Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J Struct Biol 178: 199–206.
-
(2012)
J Struct Biol
, vol.178
, pp. 199-206
-
-
Pigino, G.1
Maheshwari, A.2
Bui, K.H.3
Shingyoji, C.4
Kamimura, S.5
Ishikawa, T.6
-
77
-
-
84960153141
-
Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry
-
Pittis, AA, Gabaldon T. 2016. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531: 101–104.
-
(2016)
Nature
, vol.531
, pp. 101-104
-
-
Pittis, A.A.1
Gabaldon, T.2
-
78
-
-
84954075022
-
Evolution of the dynein heavy chain family in ciliates
-
Rajagopalan, V, Wilkes DE. 2016. Evolution of the dynein heavy chain family in ciliates. J Eukaryot Microbiol 63: 138–141.
-
(2016)
J Eukaryot Microbiol
, vol.63
, pp. 138-141
-
-
Rajagopalan, V.1
Wilkes, D.E.2
-
79
-
-
84929706874
-
Evolutionary problems in centrosome and centriole biology
-
Ross, L, Normark BB. 2015. Evolutionary problems in centrosome and centriole biology. J Evol Biol 28: 995–1004.
-
(2015)
J Evol Biol
, vol.28
, pp. 995-1004
-
-
Ross, L.1
Normark, B.B.2
-
80
-
-
84856344876
-
Cilia and Hedgehog: When and how was their marriage solemnized?
-
Roy, S. 2012. Cilia and Hedgehog: When and how was their marriage solemnized? Differentiation 83: S43–S48.
-
(2012)
Differentiation
, vol.83
, pp. S43-S48
-
-
Roy, S.1
-
82
-
-
84881517528
-
Intraflagellar transport drives flagellar surface motility
-
Shih, SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A. 2013. Intraflagellar transport drives flagellar surface motility. eLife 2: e00744.
-
(2013)
Elife
, vol.2
-
-
Shih, S.M.1
Engel, B.D.2
Kocabas, F.3
Bilyard, T.4
Gennerich, A.5
Marshall, W.F.6
Yildiz, A.7
-
83
-
-
84937405121
-
Horizontal gene transfer: Building the web of life
-
Soucy, SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: Building the web of life. Nat Rev Genet 16: 472–482.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 472-482
-
-
Soucy, S.M.1
Huang, J.2
Gogarten, J.P.3
-
84
-
-
84929329445
-
Complex archaea that bridge the gap between prokaryotes and eukaryotes
-
Spang, A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van ER, Schleper C, Guy L, Ettema TJ. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173–179.
-
(2015)
Nature
, vol.521
, pp. 173-179
-
-
Spang, A.1
Saw, J.H.2
Jorgensen, S.L.3
Zaremba-Niedzwiedzka, K.4
Martijn, J.5
Lind, A.E.6
Van, E.R.7
Schleper, C.8
Guy, L.9
Ettema, T.J.10
-
85
-
-
84893407429
-
The roles of evolutionarily conserved functional modules in cilia-related trafficking
-
Sung, CH, Leroux MR. 2013. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 15: 1387–1397.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1387-1397
-
-
Sung, C.H.1
Leroux, M.R.2
-
86
-
-
0036199035
-
The outer dynein arm-docking complex: Composition and characterization of a subunit (Oda1) necessary for outer arm assembly
-
Takada, S, Wilkerson CG, Wakabayashi K, Kamiya R, Witman GB. 2002. The outer dynein arm-docking complex: Composition and characterization of a subunit (Oda1) necessary for outer arm assembly. Mol Biol Cell 13: 1015–1029.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 1015-1029
-
-
Takada, S.1
Wilkerson, C.G.2
Wakabayashi, K.3
Kamiya, R.4
Witman, G.B.5
-
87
-
-
0023372480
-
Creatine kinasedependent energy transport in sea urchin spermatozoa. Flagellarwave attenuation and theoretical analysis of high energy phosphate diffusion
-
Tombes, RM, Brokaw CJ, Shapiro BM. 1987. Creatine kinasedependent energy transport in sea urchin spermatozoa. Flagellarwave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J 52: 75–86.
-
(1987)
Biophys J
, vol.52
, pp. 75-86
-
-
Tombes, R.M.1
Brokaw, C.J.2
Shapiro, B.M.3
-
88
-
-
84939572971
-
Z-Tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells
-
Turk, E, Wills AA, Kwon T, Sedzinski J, Wallingford JB, Stearns T. 2015. z-Tubulin is a member of a conserved tubulin module and is a component of the centriolar basal foot in multiciliated cells. Curr Biol 25: 2177–2183.
-
(2015)
Curr Biol
, vol.25
, pp. 2177-2183
-
-
Turk, E.1
Wills, A.A.2
Kwon, T.3
Sedzinski, J.4
Wallingford, J.B.5
Stearns, T.6
-
89
-
-
84901742125
-
Paramecium, BBS genes are key to presence of channels in cilia
-
Valentine, MS, Rajendran A, Yano J, Weeraratne SD, Beisson J, Cohen J, Koll F, Van HJ. 2012. Paramecium, BBS genes are key to presence of channels in cilia. Cilia 1: 1–16.
-
(2012)
Cilia
, vol.1
, pp. 1-16
-
-
Valentine, M.S.1
Rajendran, A.2
Yano, J.3
Weeraratne, S.D.4
Beisson, J.5
Cohen, J.6
Koll, F.7
Van, H.J.8
-
90
-
-
79952280152
-
Structures of SAS-6 suggest its organization in centrioles
-
van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, et al. 2011. Structures of SAS-6 suggest its organization in centrioles. Science 331: 1196–1199.
-
(2011)
Science
, vol.331
, pp. 1196-1199
-
-
Van Breugel, M.1
Hirono, M.2
Reeva, A.3
Yanagisawa, H.A.4
Yamaguchi, S.5
Nakazawa, Y.6
Morgner, N.7
Petrovich, M.8
Ebong, I.O.9
Robinson, C.V.10
-
91
-
-
84876854722
-
Evolution of modular intraflagellar transport from a coatomer-like progenitor
-
van Dam TJ, Townsend MJ, Turk M, Schlessinger A, Sali A, Field MC, Huynen MA. 2013. Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proc Natl Acad Sci 110: 6943–6948.
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 6943-6948
-
-
Van Dam, T.J.1
Townsend, M.J.2
Turk, M.3
Schlessinger, A.4
Sali, A.5
Field, M.C.6
Huynen, M.A.7
-
92
-
-
35948979262
-
Dyneins across eukaryotes: A comparative genomic analysis
-
Wickstead, B, Gull K. 2007. Dyneins across eukaryotes: A comparative genomic analysis. Traffic 8: 1708–1721.
-
(2007)
Traffic
, vol.8
, pp. 1708-1721
-
-
Wickstead, B.1
Gull, K.2
-
93
-
-
41449086954
-
Twentyfive dyneins in Tetrahymena: A re-examination of the multidynein hypothesis
-
Wilkes, DE, Watson HE, Mitchell DR, Asai DJ. 2008. Twentyfive dyneins in Tetrahymena: A re-examination of the multidynein hypothesis. Cell Motil Cytoskeleton 65: 342–351.
-
(2008)
Cell Motil Cytoskeleton
, vol.65
, pp. 342-351
-
-
Wilkes, D.E.1
Watson, H.E.2
Mitchell, D.R.3
Asai, D.J.4
-
95
-
-
84874658994
-
The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans
-
Wirschell, M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, et al. 2013. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45: 262–268.
-
(2013)
Nat Genet
, vol.45
, pp. 262-268
-
-
Wirschell, M.1
Olbrich, H.2
Werner, C.3
Tritschler, D.4
Bower, R.5
Sale, W.S.6
Loges, N.T.7
Pennekamp, P.8
Lindberg, S.9
Stenram, U.10
-
96
-
-
33750978674
-
A novel subunit of axonemal dynein conserved among lower and higher eukaryotes
-
Yamamoto, R, Yanagisawa HA, Yagi T, Kamiya R. 2006. A novel subunit of axonemal dynein conserved among lower and higher eukaryotes. FEBS Lett 580: 6357–6360.
-
(2006)
FEBS Lett
, vol.580
, pp. 6357-6360
-
-
Yamamoto, R.1
Yanagisawa, H.A.2
Yagi, T.3
Kamiya, R.4
-
97
-
-
40649120193
-
Novel 44-kilodalton subunit of axonemal dynein conserved from Chlamydomonas to mammals
-
Yamamoto, R, Yanagisawa HA, Yagi T, Kamiya R. 2008.Novel 44-kilodalton subunit of axonemal dynein conserved from Chlamydomonas to mammals. Eukaryot Cell 7: 154–161.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 154-161
-
-
Yamamoto, R.1
Yanagisawa, H.A.2
Yagi, T.3
Kamiya, R.4
-
98
-
-
84876716007
-
The, MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility
-
Yamamoto, R, Song K, Yanagisawa HA, Fox L, Yagi T, Wirschell M, Hirono M, Kamiya R, Nicastro D, Sale WS. 2013. The, MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J Cell Biol 201: 263–278.
-
(2013)
J Cell Biol
, vol.201
, pp. 263-278
-
-
Yamamoto, R.1
Song, K.2
Yanagisawa, H.A.3
Fox, L.4
Yagi, T.5
Wirschell, M.6
Hirono, M.7
Kamiya, R.8
Nicastro, D.9
Sale, W.S.10
-
99
-
-
84899670189
-
FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas
-
Yanagisawa, HA, Mathis G, Oda T, Hirono M, Richey EA, Ishikawa H, Marshall WF, Kikkawa M, Qin H. 2014. FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas. Mol Biol Cell 25: 1472–1483.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 1472-1483
-
-
Yanagisawa, H.A.1
Mathis, G.2
Oda, T.3
Hirono, M.4
Richey, E.A.5
Ishikawa, H.6
Marshall, W.F.7
Kikkawa, M.8
Qin, H.9
-
100
-
-
84867336373
-
Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2
-
Yoshiba, S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, et al. 2012. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338: 226–231.
-
(2012)
Science
, vol.338
, pp. 226-231
-
-
Yoshiba, S.1
Shiratori, H.2
Kuo, I.Y.3
Kawasumi, A.4
Shinohara, K.5
Nonaka, S.6
Asai, Y.7
Sasaki, G.8
Belo, J.A.9
Sasaki, H.10
|