메뉴 건너뛰기




Volumn 59, Issue , 2017, Pages 63-75

Corrigendum to “Sparse Composition of Body Poses and Atomic Actions for Human Activity Recognition in RGB-D Videos” (Image Vis. Comput. (2017) 59 (63-75) (S0262885616301949) (10.1016/j.imavis.2016.11.004));Sparse composition of body poses and atomic actions for human activity recognition in RGB-D videos

Author keywords

Activity recognition; Hierarchical recognition model; RGB D videos

Indexed keywords

HIERARCHICAL SYSTEMS; IMAGE RECOGNITION;

EID: 85009083917     PISSN: 02628856     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.imavis.2017.09.002     Document Type: Erratum
Times cited : (50)

References (42)
  • 1
    • 79955649703 scopus 로고    scopus 로고
    • Human activity analysis
    • [1] Aggarwal, J.K., Ryoo, M.S., Human activity analysis. ACM Comput. Surv. 43:3 (2011), 16:1–16:43.
    • (2011) ACM Comput. Surv. , vol.43 , Issue.3 , pp. 161-16:43
    • Aggarwal, J.K.1    Ryoo, M.S.2
  • 2
    • 78751648503 scopus 로고    scopus 로고
    • A survey of vision-based methods for action representation, segmentation and recognition
    • [2] Weinland, D., Ronfard, R., Boyer, E., A survey of vision-based methods for action representation, segmentation and recognition. Int. J. Comput. Vis. Image Underst. 115:2 (2011), 224–241.
    • (2011) Int. J. Comput. Vis. Image Underst. , vol.115 , Issue.2 , pp. 224-241
    • Weinland, D.1    Ronfard, R.2    Boyer, E.3
  • 4
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [4] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 5
    • 84911386198 scopus 로고    scopus 로고
    • Discriminative hierarchical modeling of spatio-temporally composable human activities
    • [5] Lillo, I., Soto, A., Niebles, J.C., Discriminative hierarchical modeling of spatio-temporally composable human activities. CVPR, 2014, 812–819.
    • (2014) CVPR , pp. 812-819
    • Lillo, I.1    Soto, A.2    Niebles, J.C.3
  • 6
    • 84958104996 scopus 로고    scopus 로고
    • 3D skeleton-based human action classification: a survey
    • [6] Presti, L.L., Cascia, M.L., 3D skeleton-based human action classification: a survey. Pattern Recogn. 53 (2015), 130–147.
    • (2015) Pattern Recogn. , vol.53 , pp. 130-147
    • Presti, L.L.1    Cascia, M.L.2
  • 7
    • 84928273573 scopus 로고    scopus 로고
    • Semantic human activity recognition: a literature review
    • [7] Ziaeefard, M., Bergevin, R., Semantic human activity recognition: a literature review. Pattern Recogn. 48:8 (2015), 2329–2345.
    • (2015) Pattern Recogn. , vol.48 , Issue.8 , pp. 2329-2345
    • Ziaeefard, M.1    Bergevin, R.2
  • 8
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • [8] Laptev, I., On space-time interest points. Int. J. Comput. Vis. 64:2-3 (2005), 107–123.
    • (2005) Int. J. Comput. Vis. , vol.64 , Issue.2-3 , pp. 107-123
    • Laptev, I.1
  • 9
    • 33845569004 scopus 로고    scopus 로고
    • Discriminative object class models of appearance and shape by correlatons
    • [9] Savarese, S., Winn, J., Criminisi, A., Discriminative object class models of appearance and shape by correlatons. CVPR, 2006, 2033–2040.
    • (2006) CVPR , pp. 2033-2040
    • Savarese, S.1    Winn, J.2    Criminisi, A.3
  • 10
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: spatial pyramid matching for recognizing natural scene categories
    • [10] Lazebnik, S., Schmid, C., Ponce, J., Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. CVPR, 2006, 2168–2178.
    • (2006) CVPR , pp. 2168-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 11
  • 13
    • 78149353400 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • [13] Niebles, J.C., Chen, C.-W., Fei-Fei, L., Modeling temporal structure of decomposable motion segments for activity classification. ECCV, 2010, 392–405.
    • (2010) ECCV , pp. 392-405
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 14
    • 84906782091 scopus 로고    scopus 로고
    • Human activity recognition from 3D data: a review
    • [14] Aggarwal, J.K., Xia, L., Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48 (2014), 70–80.
    • (2014) Pattern Recogn. Lett. , vol.48 , pp. 70-80
    • Aggarwal, J.K.1    Xia, L.2
  • 15
    • 84887375927 scopus 로고    scopus 로고
    • HON4D: histogram of oriented 4D normals for activity recognition from depth sequences
    • [15] Oreifej, O., Liu, Z., HON4D: histogram of oriented 4D normals for activity recognition from depth sequences. CVPR, 2013, 716–723.
    • (2013) CVPR , pp. 716-723
    • Oreifej, O.1    Liu, Z.2
  • 16
    • 84908158515 scopus 로고    scopus 로고
    • Spatio-temporal feature extraction and representation for RGB-D human action recognition
    • [16] Luo, J., Wang, W., Qi, H., Spatio-temporal feature extraction and representation for RGB-D human action recognition. Pattern Recogn. Lett. 50:1 (2014), 139–148.
    • (2014) Pattern Recogn. Lett. , vol.50 , Issue.1 , pp. 139-148
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 17
    • 85009078185 scopus 로고    scopus 로고
    • Kinect for windows SDK
    • [17] Microsoft. Kinect for windows SDK. 2012.
    • (2012)
  • 18
    • 84866235335 scopus 로고    scopus 로고
    • Automated vision-based recognition of construction worker actions for building interior construction operations using RGBD cameras
    • [18] Escorcia, V., Davila, M.A., Golparvar-Fard, M., Niebles, J.C., Automated vision-based recognition of construction worker actions for building interior construction operations using RGBD cameras. Construction Research Congress, 2012, 879–888.
    • (2012) Construction Research Congress , pp. 879-888
    • Escorcia, V.1    Davila, M.A.2    Golparvar-Fard, M.3    Niebles, J.C.4
  • 19
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3D skeletons as points in a Lie group
    • [19] Vemulapalli, R., Arrate, F., Chellappa, R., Human action recognition by representing 3D skeletons as points in a Lie group. CVPR, 2014, 588–595.
    • (2014) CVPR , pp. 588-595
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 20
    • 84986296553 scopus 로고    scopus 로고
    • Moving poselets: a discriminative and interpretable skeletal motion representation for action recognition
    • [20] Tao, L., Vidal, R., Moving poselets: a discriminative and interpretable skeletal motion representation for action recognition. IEEE International Conference on Computer Vision Workshops, 2015, 61–69.
    • (2015) IEEE International Conference on Computer Vision Workshops , pp. 61-69
    • Tao, L.1    Vidal, R.2
  • 22
    • 84866672692 scopus 로고    scopus 로고
    • Mining actionlet ensemble for action recognition with depth cameras
    • [22] Wang, J., Liu, Z., Wu, Y., Yuan, J., Mining actionlet ensemble for action recognition with depth cameras. CVPR, 2012, 1290–1297.
    • (2012) CVPR , pp. 1290-1297
    • Wang, J.1    Liu, Z.2    Wu, Y.3    Yuan, J.4
  • 24
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • [24] Boureau, Y., Bach, F., LeCun, Y., Ponce, J., Learning mid-level features for recognition. CVPR, 2010, 2559–2566.
    • (2010) CVPR , pp. 2559-2566
    • Boureau, Y.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 25
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • [25] Felzenszwalb, P., Mcallester, D., Ramanan, D., A discriminatively trained, multiscale, deformable part model. CVPR, 2008, 1–8.
    • (2008) CVPR , pp. 1-8
    • Felzenszwalb, P.1    Mcallester, D.2    Ramanan, D.3
  • 26
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: probabilistic versus max margin
    • [26] Wang, Y., Mori, G., Hidden part models for human action recognition: probabilistic versus max margin. IEEE Trans. Pattern Anal. Mach. Intell. 33:7 (2011), 1310–1323.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.7 , pp. 1310-1323
    • Wang, Y.1    Mori, G.2
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • [27] Krizhevsky, A., Sutskever, I., Hinton, G., ImageNet classification with deep convolutional neural networks. NIPS, 2012, 1097–1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 28
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • [28] Du, Y., Wang, W., Wang, L., Hierarchical recurrent neural network for skeleton based action recognition. CVPR, 2015, 1110–1118.
    • (2015) CVPR , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 29
    • 84864487638 scopus 로고    scopus 로고
    • Unstructured human activity detection from RGBD images
    • [29] Sung, J., Ponce, C., Selman, B., Saxena, A., Unstructured human activity detection from RGBD images. ICRA, 2012, 842–849.
    • (2012) ICRA , pp. 842-849
    • Sung, J.1    Ponce, C.2    Selman, B.3    Saxena, A.4
  • 30
    • 80052645546 scopus 로고    scopus 로고
    • Learning a 3D human pose distance metric from geometric pose descriptor
    • [30] Chen, C., Zhuang, Y., Nie, F., Yang, Y., Wu, F., Xiao, J., Learning a 3D human pose distance metric from geometric pose descriptor. IEEE Trans. Vis. Comput. Graph. 17:11 (2010), 1676–1689.
    • (2010) IEEE Trans. Vis. Comput. Graph. , vol.17 , Issue.11 , pp. 1676-1689
    • Chen, C.1    Zhuang, Y.2    Nie, F.3    Yang, Y.4    Wu, F.5    Xiao, J.6
  • 31
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • [31] Wang, H., Klaser, A., Schmid, C., Liu, C.-L., Action recognition by dense trajectories. CVPR, 2011, 3169–3176.
    • (2011) CVPR , pp. 3169-3176
    • Wang, H.1    Klaser, A.2    Schmid, C.3    Liu, C.-L.4
  • 32
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • [32] Zou, H., Hastie, T., Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 67:2 (2005), 301–320.
    • (2005) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 33
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • [33] Yu, C., Joachims, T., Learning structural SVMs with latent variables. ICML, 2009, 1169–1176.
    • (2009) ICML , pp. 1169-1176
    • Yu, C.1    Joachims, T.2
  • 34
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • [34] Yuille, A., Rangarajan, A., The concave-convex procedure. Neural Comput. 15:4 (2003), 915–936.
    • (2003) Neural Comput. , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.1    Rangarajan, A.2
  • 35
    • 29344450414 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • [35] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y., Support vector machine learning for interdependent and structured output spaces. ICML, 2004, 104–111.
    • (2004) ICML , pp. 104-111
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 36
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • [36] Joachims, T., Finley, T., Yu, C., Cutting-plane training of structural SVMs. Mach. Learn. 77:1 (2009), 27–59.
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.3
  • 37
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3D points
    • [37] Li, W., Zhang, Z., Liu, Z., Action recognition based on a bag of 3D points. CVPR, 2010, 9–14.
    • (2010) CVPR , pp. 9-14
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 38
    • 84898787235 scopus 로고    scopus 로고
    • Group sparsity and geometry constrained dictionary learning for action recognition from depth maps
    • [38] Luo, J., Wang, W., Qi, H., Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. ICCV, IEEE, 2013, 1809–1816.
    • (2013) ICCV, IEEE , pp. 1809-1816
    • Luo, J.1    Wang, W.2    Qi, H.3
  • 39
    • 84911363420 scopus 로고    scopus 로고
    • Range-sample depth feature for action recognition
    • [39] Lu, C., Tang, C. k., Range-sample depth feature for action recognition. CVPR, 2014, 772–779.
    • (2014) CVPR , pp. 772-779
    • Lu, C.1    Tang, C.K.2
  • 40
    • 84911437630 scopus 로고    scopus 로고
    • Super normal vector for activity recognition using depth sequences
    • [40] Yang, X., Tian, Y., Super normal vector for activity recognition using depth sequences. CVPR, 2014, 804–811.
    • (2014) CVPR , pp. 804-811
    • Yang, X.1    Tian, Y.2
  • 41
    • 84887346790 scopus 로고    scopus 로고
    • An approach to pose-based action recognition
    • [41] Wang, C., Wang, Y., Yuille, A.L., An approach to pose-based action recognition. CVPR, 2013, 915–922.
    • (2013) CVPR , pp. 915-922
    • Wang, C.1    Wang, Y.2    Yuille, A.L.3
  • 42
    • 84898783696 scopus 로고    scopus 로고
    • Concurrent action detection with structural prediction
    • [42] Wei, P., Zheng, N., Zhao, Y., Zhu, S.-C., Concurrent action detection with structural prediction. ICCV, 2013, 3136–3143.
    • (2013) ICCV , pp. 3136-3143
    • Wei, P.1    Zheng, N.2    Zhao, Y.3    Zhu, S.-C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.