메뉴 건너뛰기




Volumn 1, Issue 1, 2013, Pages

Support vector machines classifiers of physical activities in preschoolers

Author keywords

Accelerometers; Activity monitoring; Classification; Multinomial logistic regression classifiers; Support vector machines classifiers

Indexed keywords

ACCELEROMETER; ACCELEROMETRY; ARTICLE; ASTHMA; CHILD; CROSS-SECTIONAL STUDY; ENDOCRINE DISEASE; ENERGY EXPENDITURE; FEMALE; HUMAN; LEARNING ALGORITHM; MALE; METABOLIC DISORDER; OBESITY; PHYSICAL ACTIVITY; PRESCHOOL CHILD; SLEEP; SLEEP DISORDERED BREATHING; SUPPORT VECTOR MACHINE;

EID: 85009062661     PISSN: None     EISSN: 2051817X     Source Type: Journal    
DOI: 10.1002/phy2.6     Document Type: Article
Times cited : (17)

References (30)
  • 1
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • Albert, A., and J. A. Anderson. 1984. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71: 1–10.
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 2
    • 77956614805 scopus 로고    scopus 로고
    • Convergence failures in logistic regression
    • Statistics and Data Analysis, Mar 16-19, 2008, San Antonio, TX
    • Allison, P. D. Convergence failures in logistic regression. 2008. In Proceedings of SAS Global Forum 2008, Statistics and Data Analysis, Mar 16-19, 2008, San Antonio, TX.
    • (2008) Proceedings of SAS Global Forum 2008
    • Allison, P.D.1
  • 3
    • 69749105447 scopus 로고    scopus 로고
    • Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
    • Bonomi, A. G., G. Plasqui, A. H. C. Goris, and K. R. Westerterp. 2009. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J. Appl. Physiol. 107: 655–661.
    • (2009) J. Appl. Physiol , vol.107 , pp. 655-661
    • Bonomi, A.G.1    Plasqui, G.2    Goris, A.H.C.3    Westerterp, K.R.4
  • 4
    • 4444320032 scopus 로고    scopus 로고
    • Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children
    • Brage, S., N. Wedderkopp, and U. Ekelund. 2004. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children. Diabetes Care 27: 2141–2148.
    • (2004) Diabetes Care , vol.27 , pp. 2141-2148
    • Brage, S.1    Wedderkopp, N.2    Ekelund, U.3
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition. Data Min. Knowl
    • Burges, C. J. C. 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2: 121–167.
    • (1998) Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 84901057697 scopus 로고    scopus 로고
    • Classification methods for activity recognition
    • Enschede, Jun 29, 2009, University of Twente, Faculty of Electrical Engineering, Mathematics and Computational Science, the Netherlands
    • Companjen, B. 2009. Classification methods for activity recognition. In 11th Twente Student Conference on IT; Enschede, Jun 29, 2009, University of Twente, Faculty of Electrical Engineering, Mathematics and Computational Science, the Netherlands.
    • (2009) 11Th Twente Student Conference on IT
    • Companjen, B.1
  • 8
    • 80052968622 scopus 로고    scopus 로고
    • Identification of children’s activity type with accelerometerbased neural networks
    • De Vries, S. I., M. Engels, and F. G. Garre. 2011a. Identification of children’s activity type with accelerometerbased neural networks. Med. Sci. Sports Exerc. 43: 1994–1999.
    • (2011) Med. Sci. Sports Exerc. , vol.43 , pp. 1994-1999
    • De Vries, S.I.1    Engels, M.2    Garre, F.G.3
  • 10
    • 84859549618 scopus 로고    scopus 로고
    • Misc Functions of the Department of Statistics (E1071), TU Wien
    • (accessed 20 August 2012)
    • Dimitriadou, E., K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. 2011. Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Ver. 1.6. Available at http: //CRAN.R-project.org/package=e1071 (accessed 20 August 2012).
    • (2011) R Package Ver. 1.6
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3    Meyer, D.4    Weingessel, A.5
  • 12
    • 57849153571 scopus 로고    scopus 로고
    • Activity recognition from acceleration data using AR model representation and SVM
    • 12–15 July, China
    • He, Z., and L. Jin. Activity recognition from acceleration data using AR model representation and SVM. 2008. Pp. 2245–2250 in Machine Learning and Cybernetics, International Conference, 12–15 July, China.
    • (2008) Machine Learning and Cybernetics, International Conference , pp. 2245-2250
    • He, Z.1    Jin, L.2
  • 13
    • 0036128341 scopus 로고    scopus 로고
    • Comparing performance of multinomial logistic regression and discriminant analysis for monitoring access to care for acute myocardial infarction
    • Hossain, M., S. Wright, and L. A. Petersen. 2002. Comparing performance of multinomial logistic regression and discriminant analysis for monitoring access to care for acute myocardial infarction. J. Clin. Epidemiol. 55: 400–406.
    • (2002) J. Clin. Epidemiol , vol.55 , pp. 400-406
    • Hossain, M.1    Wright, S.2    Petersen, L.A.3
  • 16
    • 0031907485 scopus 로고    scopus 로고
    • Recognition of daily life motor activity classes using an artificial neural network
    • Kiani, K., C. J. Snijders, and E. S. Gelsema. 1998. Recognition of daily life motor activity classes using an artificial neural network. Arch. Phys. Med. Rehabil. 79: 147–154.
    • (1998) Arch. Phys. Med. Rehabil , vol.79 , pp. 147-154
    • Kiani, K.1    Snijders, C.J.2    Gelsema, E.S.3
  • 19
    • 33748577353 scopus 로고    scopus 로고
    • Development of novel techniques to classify physical activity mode using accelerometers
    • Pober, D. M., J. Staudenmayer, C. Raphael, and P. S. Freedson. 2006. Development of novel techniques to classify physical activity mode using accelerometers. Med. Sci. Sports Exerc. 38: 1626–1634.
    • (2006) Med. Sci. Sports Exerc. , vol.38 , pp. 1626-1634
    • Pober, D.M.1    Staudenmayer, J.2    Raphael, C.3    Freedson, P.S.4
  • 20
    • 35348971908 scopus 로고    scopus 로고
    • An artificial neural network model of energy expenditure using nonintegrated acceleration signals
    • Rothney, M. P., M. Neumann, A. Beziat, and K. Y. Chen. 2007. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J. Appl. Physiol. 103: 1419–1427.
    • (2007) J. Appl. Physiol , vol.103 , pp. 1419-1427
    • Rothney, M.P.1    Neumann, M.2    Beziat, A.3    Chen, K.Y.4
  • 21
    • 0001431651 scopus 로고
    • A note on A. Albert and J. A. Anderson’s conditions for the existence of maximum likelihood estimates in logistic regression models
    • Santner, T. J., and D. E. Duffy. 1986. A note on A. Albert and J. A. Anderson’s conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika 73: 755–758.
    • (1986) Biometrika , vol.73 , pp. 755-758
    • Santner, T.J.1    Duffy, D.E.2
  • 22
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J., and B. Schölkopf. 2004. A tutorial on support vector regression. Stat. Comput. 14: 199–222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 23
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer, J., D. Pober, S. Crouter, D. Bassett, and P. Freedson. 2009. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J. Appl. Physiol. 107: 1300–1307.
    • (2009) J. Appl. Physiol. , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 25
    • 41149177155 scopus 로고    scopus 로고
    • Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor
    • 11–13 October, Boston, MA
    • Tapia, E. M., S. S. Intille, and W. Haskell. 2007. Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. Pp. 37–40 in Wearable Computers, 2007 11th IEEE International Symposium, 11–13 October, Boston, MA.
    • (2007) Wearable Computers, 2007 11Th IEEE International Symposium , pp. 37-40
    • Tapia, E.M.1    Intille, S.S.2    Haskell, W.3
  • 26
    • 69249217895 scopus 로고    scopus 로고
    • Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
    • Torres, M., C. Hervas, and C. Garcia. 2009. Multinomial logistic regression and product unit neural network models: application of a new hybrid methodology for solving a classification problem in the livestock sector. Expert Syst. Appl. 36: 12225–12235.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 12225-12235
    • Torres, M.1    Hervas, C.2    Garcia, C.3
  • 27
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. N. 1999. An overview of statistical learning theory. IEEE Trans. Neural Netw. 10: 988–999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 28
    • 28044470097 scopus 로고    scopus 로고
    • A multinomial logistic regression modeling approach for anomaly intrusion detection
    • Wang, Y. 2005. A multinomial logistic regression modeling approach for anomaly intrusion detection. Comput. Secur. 24: 662–674.
    • (2005) Comput. Secur. , vol.24 , pp. 662-674
    • Wang, Y.1
  • 29
    • 49649116409 scopus 로고    scopus 로고
    • Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry
    • Zakeri, I. F., A. L. Adolph, M. R. Puyau, F. A. Vohra, and N. F. Butte. 2008. Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. J. Appl. Physiol. 104: 1665–1673.
    • (2008) J. Appl. Physiol , vol.104 , pp. 1665-1673
    • Zakeri, I.F.1    Adolph, A.L.2    Puyau, M.R.3    Vohra, F.A.4    Butte, N.F.5
  • 30
    • 73949137625 scopus 로고    scopus 로고
    • Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents
    • Zakeri, I. F., A. L. Adolph, M. R. Puyau, F. A. Vohra, and N. F. Butte. 2010. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. J. Appl. Physiol. 108: 128–136.
    • (2010) J. Appl. Physiol , vol.108 , pp. 128-136
    • Zakeri, I.F.1    Adolph, A.L.2    Puyau, M.R.3    Vohra, F.A.4    Butte, N.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.