-
1
-
-
0002662712
-
On the existence of maximum likelihood estimates in logistic regression models
-
Albert, A., and J. A. Anderson. 1984. On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71: 1–10.
-
(1984)
Biometrika
, vol.71
, pp. 1-10
-
-
Albert, A.1
Anderson, J.A.2
-
2
-
-
77956614805
-
Convergence failures in logistic regression
-
Statistics and Data Analysis, Mar 16-19, 2008, San Antonio, TX
-
Allison, P. D. Convergence failures in logistic regression. 2008. In Proceedings of SAS Global Forum 2008, Statistics and Data Analysis, Mar 16-19, 2008, San Antonio, TX.
-
(2008)
Proceedings of SAS Global Forum 2008
-
-
Allison, P.D.1
-
3
-
-
69749105447
-
Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
-
Bonomi, A. G., G. Plasqui, A. H. C. Goris, and K. R. Westerterp. 2009. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J. Appl. Physiol. 107: 655–661.
-
(2009)
J. Appl. Physiol
, vol.107
, pp. 655-661
-
-
Bonomi, A.G.1
Plasqui, G.2
Goris, A.H.C.3
Westerterp, K.R.4
-
4
-
-
4444320032
-
Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children
-
Brage, S., N. Wedderkopp, and U. Ekelund. 2004. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children. Diabetes Care 27: 2141–2148.
-
(2004)
Diabetes Care
, vol.27
, pp. 2141-2148
-
-
Brage, S.1
Wedderkopp, N.2
Ekelund, U.3
-
5
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition. Data Min. Knowl
-
Burges, C. J. C. 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2: 121–167.
-
(1998)
Disc
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
6
-
-
70349109979
-
Human activity recognition using a 3-axis accelerometer and a wearable camera
-
17 June, Breckenridge, CO. ACM 7: 1, 7: 3
-
Cho, Y., Y. Nam, Y. Choi, and W. S. Cho. Human activity recognition using a 3-axis accelerometer and a wearable camera. 2008. In Proceedings of the 2nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments, 17 June, Breckenridge, CO. ACM 7: 1, 7: 3.
-
(2008)
Proceedings of the 2Nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments
-
-
Cho, Y.1
Nam, Y.2
Choi, Y.3
Cho, W.S.4
-
7
-
-
84901057697
-
Classification methods for activity recognition
-
Enschede, Jun 29, 2009, University of Twente, Faculty of Electrical Engineering, Mathematics and Computational Science, the Netherlands
-
Companjen, B. 2009. Classification methods for activity recognition. In 11th Twente Student Conference on IT; Enschede, Jun 29, 2009, University of Twente, Faculty of Electrical Engineering, Mathematics and Computational Science, the Netherlands.
-
(2009)
11Th Twente Student Conference on IT
-
-
Companjen, B.1
-
8
-
-
80052968622
-
Identification of children’s activity type with accelerometerbased neural networks
-
De Vries, S. I., M. Engels, and F. G. Garre. 2011a. Identification of children’s activity type with accelerometerbased neural networks. Med. Sci. Sports Exerc. 43: 1994–1999.
-
(2011)
Med. Sci. Sports Exerc.
, vol.43
, pp. 1994-1999
-
-
De Vries, S.I.1
Engels, M.2
Garre, F.G.3
-
9
-
-
78650900690
-
Evaluation of neural networks to identify types of activity using accelerometers
-
De Vries, S. I., F. G. Garre, L. H. Engbers, V. H. Hildebrandt, and S. Van Buuren. 2011b. Evaluation of neural networks to identify types of activity using accelerometers. Med. Sci. Sports Exerc. 43: 101–107.
-
(2011)
Med. Sci. Sports Exerc.
, vol.43
, pp. 101-107
-
-
De Vries, S.I.1
Garre, F.G.2
Engbers, L.H.3
Hildebrandt, V.H.4
Van Buuren, S.5
-
10
-
-
84859549618
-
Misc Functions of the Department of Statistics (E1071), TU Wien
-
(accessed 20 August 2012)
-
Dimitriadou, E., K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. 2011. Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Ver. 1.6. Available at http: //CRAN.R-project.org/package=e1071 (accessed 20 August 2012).
-
(2011)
R Package Ver. 1.6
-
-
Dimitriadou, E.1
Hornik, K.2
Leisch, F.3
Meyer, D.4
Weingessel, A.5
-
11
-
-
0003684449
-
-
Springer, New York, NY
-
Hastie, T., R. Tibshirani, and J. H. Friedman. 2001. The elements of statistical learning: data mining, inference, and prediction. Springer, New York, NY.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
12
-
-
57849153571
-
Activity recognition from acceleration data using AR model representation and SVM
-
12–15 July, China
-
He, Z., and L. Jin. Activity recognition from acceleration data using AR model representation and SVM. 2008. Pp. 2245–2250 in Machine Learning and Cybernetics, International Conference, 12–15 July, China.
-
(2008)
Machine Learning and Cybernetics, International Conference
, pp. 2245-2250
-
-
He, Z.1
Jin, L.2
-
13
-
-
0036128341
-
Comparing performance of multinomial logistic regression and discriminant analysis for monitoring access to care for acute myocardial infarction
-
Hossain, M., S. Wright, and L. A. Petersen. 2002. Comparing performance of multinomial logistic regression and discriminant analysis for monitoring access to care for acute myocardial infarction. J. Clin. Epidemiol. 55: 400–406.
-
(2002)
J. Clin. Epidemiol
, vol.55
, pp. 400-406
-
-
Hossain, M.1
Wright, S.2
Petersen, L.A.3
-
14
-
-
62049085839
-
-
Springer, New York, NY
-
Izenman, A. J.. 2008. Modern multivariate statistical techniques: regression, classification, and manifold learning. Springer, New York, NY.
-
(2008)
Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning
-
-
Izenman, A.J.1
-
16
-
-
0031907485
-
Recognition of daily life motor activity classes using an artificial neural network
-
Kiani, K., C. J. Snijders, and E. S. Gelsema. 1998. Recognition of daily life motor activity classes using an artificial neural network. Arch. Phys. Med. Rehabil. 79: 147–154.
-
(1998)
Arch. Phys. Med. Rehabil
, vol.79
, pp. 147-154
-
-
Kiani, K.1
Snijders, C.J.2
Gelsema, E.S.3
-
19
-
-
33748577353
-
Development of novel techniques to classify physical activity mode using accelerometers
-
Pober, D. M., J. Staudenmayer, C. Raphael, and P. S. Freedson. 2006. Development of novel techniques to classify physical activity mode using accelerometers. Med. Sci. Sports Exerc. 38: 1626–1634.
-
(2006)
Med. Sci. Sports Exerc.
, vol.38
, pp. 1626-1634
-
-
Pober, D.M.1
Staudenmayer, J.2
Raphael, C.3
Freedson, P.S.4
-
20
-
-
35348971908
-
An artificial neural network model of energy expenditure using nonintegrated acceleration signals
-
Rothney, M. P., M. Neumann, A. Beziat, and K. Y. Chen. 2007. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J. Appl. Physiol. 103: 1419–1427.
-
(2007)
J. Appl. Physiol
, vol.103
, pp. 1419-1427
-
-
Rothney, M.P.1
Neumann, M.2
Beziat, A.3
Chen, K.Y.4
-
21
-
-
0001431651
-
A note on A. Albert and J. A. Anderson’s conditions for the existence of maximum likelihood estimates in logistic regression models
-
Santner, T. J., and D. E. Duffy. 1986. A note on A. Albert and J. A. Anderson’s conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika 73: 755–758.
-
(1986)
Biometrika
, vol.73
, pp. 755-758
-
-
Santner, T.J.1
Duffy, D.E.2
-
22
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. J., and B. Schölkopf. 2004. A tutorial on support vector regression. Stat. Comput. 14: 199–222.
-
(2004)
Stat. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
23
-
-
70350115240
-
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
-
Staudenmayer, J., D. Pober, S. Crouter, D. Bassett, and P. Freedson. 2009. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J. Appl. Physiol. 107: 1300–1307.
-
(2009)
J. Appl. Physiol.
, vol.107
, pp. 1300-1307
-
-
Staudenmayer, J.1
Pober, D.2
Crouter, S.3
Bassett, D.4
Freedson, P.5
-
25
-
-
41149177155
-
Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor
-
11–13 October, Boston, MA
-
Tapia, E. M., S. S. Intille, and W. Haskell. 2007. Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. Pp. 37–40 in Wearable Computers, 2007 11th IEEE International Symposium, 11–13 October, Boston, MA.
-
(2007)
Wearable Computers, 2007 11Th IEEE International Symposium
, pp. 37-40
-
-
Tapia, E.M.1
Intille, S.S.2
Haskell, W.3
-
26
-
-
69249217895
-
Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
-
Torres, M., C. Hervas, and C. Garcia. 2009. Multinomial logistic regression and product unit neural network models: application of a new hybrid methodology for solving a classification problem in the livestock sector. Expert Syst. Appl. 36: 12225–12235.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 12225-12235
-
-
Torres, M.1
Hervas, C.2
Garcia, C.3
-
27
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik, V. N. 1999. An overview of statistical learning theory. IEEE Trans. Neural Netw. 10: 988–999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, pp. 988-999
-
-
Vapnik, V.N.1
-
28
-
-
28044470097
-
A multinomial logistic regression modeling approach for anomaly intrusion detection
-
Wang, Y. 2005. A multinomial logistic regression modeling approach for anomaly intrusion detection. Comput. Secur. 24: 662–674.
-
(2005)
Comput. Secur.
, vol.24
, pp. 662-674
-
-
Wang, Y.1
-
29
-
-
49649116409
-
Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry
-
Zakeri, I. F., A. L. Adolph, M. R. Puyau, F. A. Vohra, and N. F. Butte. 2008. Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. J. Appl. Physiol. 104: 1665–1673.
-
(2008)
J. Appl. Physiol
, vol.104
, pp. 1665-1673
-
-
Zakeri, I.F.1
Adolph, A.L.2
Puyau, M.R.3
Vohra, F.A.4
Butte, N.F.5
-
30
-
-
73949137625
-
Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents
-
Zakeri, I. F., A. L. Adolph, M. R. Puyau, F. A. Vohra, and N. F. Butte. 2010. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. J. Appl. Physiol. 108: 128–136.
-
(2010)
J. Appl. Physiol
, vol.108
, pp. 128-136
-
-
Zakeri, I.F.1
Adolph, A.L.2
Puyau, M.R.3
Vohra, F.A.4
Butte, N.F.5
|