메뉴 건너뛰기




Volumn 66, Issue , 2017, Pages 72-81

Accuracy of an automated knowledge base for identifying drug adverse reactions

Author keywords

Adverse drug reaction; Health outcome; Knowledge base; Machine learning experiment; Pharmacovigilance

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA HANDLING; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; PHARMACODYNAMICS;

EID: 85008622502     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2016.12.005     Document Type: Article
Times cited : (73)

References (44)
  • 1
    • 1542376438 scopus 로고    scopus 로고
    • Safety of Medicine, A guide to detecting and reporting adverse drug reactions
    • [PDF], 03/24/2012], Available from: <>.
    • [1] Safety of Medicine, A guide to detecting and reporting adverse drug reactions, [PDF] 2002 03/24/2012], Available from: < http://whqlibdoc.who.int/hq/2002/WHO_EDM_QSM_2002.2.pdf>.
    • (2002)
  • 2
    • 2442433545 scopus 로고    scopus 로고
    • Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting
    • [2] Nebeker, J.R., Barach, P., Samore, M.H., Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting. Ann. Intern. Med. 140:10 (2004), 795–801.
    • (2004) Ann. Intern. Med. , vol.140 , Issue.10 , pp. 795-801
    • Nebeker, J.R.1    Barach, P.2    Samore, M.H.3
  • 3
    • 84937765319 scopus 로고    scopus 로고
    • Epidemiology of adverse drug reactions in Europe: a review of recent observational studies
    • [3] Bouvy, J.C., De Bruin, M.L., Koopmanschap, M.A., Epidemiology of adverse drug reactions in Europe: a review of recent observational studies. Drug Saf. 38:5 (2015), 437–453.
    • (2015) Drug Saf. , vol.38 , Issue.5 , pp. 437-453
    • Bouvy, J.C.1    De Bruin, M.L.2    Koopmanschap, M.A.3
  • 4
    • 84868207501 scopus 로고    scopus 로고
    • Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis
    • [4] Miguel, A., et al. Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis. Pharmacoepidemiol. Drug Saf. 21:11 (2012), 1139–1154.
    • (2012) Pharmacoepidemiol. Drug Saf. , vol.21 , Issue.11 , pp. 1139-1154
    • Miguel, A.1
  • 5
    • 0032522873 scopus 로고    scopus 로고
    • Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies
    • [5] Lazarou, J., Pomeranz, B.H., Corey, P.N., Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:15 (1998), 1200–1205.
    • (1998) JAMA , vol.279 , Issue.15 , pp. 1200-1205
    • Lazarou, J.1    Pomeranz, B.H.2    Corey, P.N.3
  • 6
    • 79957577277 scopus 로고    scopus 로고
    • A quantitative analysis of adverse events and “overwarning” in drug labeling
    • [6] Duke, J., Friedlin, J., Ryan, P., A quantitative analysis of adverse events and “overwarning” in drug labeling. Arch. Intern. Med. 171:10 (2011), 944–946.
    • (2011) Arch. Intern. Med. , vol.171 , Issue.10 , pp. 944-946
    • Duke, J.1    Friedlin, J.2    Ryan, P.3
  • 7
    • 84874511186 scopus 로고    scopus 로고
    • Consistency in the safety labeling of bioequivalent medications
    • [7] Duke, J., Friedlin, J., Li, X., Consistency in the safety labeling of bioequivalent medications. Pharmacoepidemiol. Drug Saf. 22:3 (2013), 294–301.
    • (2013) Pharmacoepidemiol. Drug Saf. , vol.22 , Issue.3 , pp. 294-301
    • Duke, J.1    Friedlin, J.2    Li, X.3
  • 9
    • 48749103879 scopus 로고    scopus 로고
    • Adverse event detection in drug development: recommendations and obligations beyond phase 3
    • [9] Berlin, J.A., Glasser, S.C., Ellenberg, S.S., Adverse event detection in drug development: recommendations and obligations beyond phase 3. Am. J. Public Health 98:8 (2008), 1366–1371.
    • (2008) Am. J. Public Health , vol.98 , Issue.8 , pp. 1366-1371
    • Berlin, J.A.1    Glasser, S.C.2    Ellenberg, S.S.3
  • 10
    • 79851472033 scopus 로고    scopus 로고
    • Developing the sentinel system—a national resource for evidence development
    • [10] Behrman, R.E., et al. Developing the sentinel system—a national resource for evidence development. N. Engl. J. Med. 364:6 (2011), 498–499.
    • (2011) N. Engl. J. Med. , vol.364 , Issue.6 , pp. 498-499
    • Behrman, R.E.1
  • 11
    • 84892948635 scopus 로고    scopus 로고
    • A comparison of the empirical performance of methods for a risk identification system
    • [11] Ryan, P.B., et al. A comparison of the empirical performance of methods for a risk identification system. Drug Saf. 36:Suppl. 1 (2013), S143–S158.
    • (2013) Drug Saf. , vol.36 , pp. S143-S158
    • Ryan, P.B.1
  • 12
    • 84890240053 scopus 로고    scopus 로고
    • Interpreting observational studies: why empirical calibration is needed to correct p-values
    • [12] Schuemie, M.J., et al. Interpreting observational studies: why empirical calibration is needed to correct p-values. Stat. Med. 33:2 (2014), 209–218.
    • (2014) Stat. Med. , vol.33 , Issue.2 , pp. 209-218
    • Schuemie, M.J.1
  • 13
    • 84870875674 scopus 로고    scopus 로고
    • Empirical assessment of methods for risk identification in healthcare data: results from the experiments of the observational medical outcomes partnership
    • [13] Ryan, P.B., et al. Empirical assessment of methods for risk identification in healthcare data: results from the experiments of the observational medical outcomes partnership. Stat. Med. 31:30 (2012), 4401–4415.
    • (2012) Stat. Med. , vol.31 , Issue.30 , pp. 4401-4415
    • Ryan, P.B.1
  • 14
    • 84866563491 scopus 로고    scopus 로고
    • Using electronic health care records for drug safety signal detection: a comparative evaluation of statistical methods
    • [14] Schuemie, M.J., et al. Using electronic health care records for drug safety signal detection: a comparative evaluation of statistical methods. Med. Care 50:10 (2012), 890–897.
    • (2012) Med. Care , vol.50 , Issue.10 , pp. 890-897
    • Schuemie, M.J.1
  • 15
    • 84952053307 scopus 로고    scopus 로고
    • Observational health data sciences and informatics (OHDSI): opportunities for observational researchers
    • [15] Hripcsak, G., et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud. Health Technol. Inform. 216 (2015), 574–578.
    • (2015) Stud. Health Technol. Inform. , vol.216 , pp. 574-578
    • Hripcsak, G.1
  • 16
    • 84906313665 scopus 로고    scopus 로고
    • Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest
    • [16] Boyce, R.D., et al. Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf. 37:8 (2014), 557–567.
    • (2014) Drug Saf. , vol.37 , Issue.8 , pp. 557-567
    • Boyce, R.D.1
  • 17
    • 85008690366 scopus 로고    scopus 로고
    • Observational Health Data Sciences and Informatics (OHDSI) Vocabulary Resources, [web page] 2015 (2015.06.03), Available from: <>.
    • [17] Observational Health Data Sciences and Informatics (OHDSI) Vocabulary Resources, [web page] 2015 (2015.06.03), Available from: < http://www.ohdsi.org/data-standardization/vocabulary-resources/>.
  • 18
    • 85008621449 scopus 로고    scopus 로고
    • Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardized Vocabularies, [Web Page] 03/26/2015, Available from: <>.
    • [18] V. Huser, et al., Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardized Vocabularies, [Web Page] 03/26/2015, Available from: < http://www.slideshare.net/boycer/piloting-acomprehensivepharmacovigilanceknowledgebase2015v2>.
    • Huser, V.1
  • 19
    • 85008669897 scopus 로고    scopus 로고
    • KnowledgeBase GitHub, [Web Page], Available from: <>.
    • [19] KnowledgeBase GitHub, [Web Page], Available from: < https://github.com/OHDSI/KnowledgeBase/>.
  • 20
    • 85008695384 scopus 로고    scopus 로고
    • LAERTES: An open scalable architecture for linking pharmacovigilance evidence sources with clinical data, 2016 1-AUG-2016, Available from: <>.
    • [20] R. Boyce, et al., LAERTES: An open scalable architecture for linking pharmacovigilance evidence sources with clinical data, 2016 1-AUG-2016, Available from: < http://icbo.cgrb.oregonstate.edu/node/354>.
    • Boyce, R.1
  • 21
    • 0036210975 scopus 로고    scopus 로고
    • A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions
    • [21] van Puijenbroek, E.P., et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol. Drug Saf. 11:1 (2002), 3–10.
    • (2002) Pharmacoepidemiol. Drug Saf. , vol.11 , Issue.1 , pp. 3-10
    • van Puijenbroek, E.P.1
  • 22
    • 84969959908 scopus 로고    scopus 로고
    • A curated and standardized adverse drug event resource to accelerate drug safety research
    • [22] Banda, J.M., et al. A curated and standardized adverse drug event resource to accelerate drug safety research. Sci. Data, 3, 2016, 160026.
    • (2016) Sci. Data , vol.3 , pp. 160026
    • Banda, J.M.1
  • 23
    • 84879988282 scopus 로고    scopus 로고
    • Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project
    • [23] Avillach, P., et al. Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project. J. Am. Med. Inform. Assoc. 20:3 (2013), 446–452.
    • (2013) J. Am. Med. Inform. Assoc. , vol.20 , Issue.3 , pp. 446-452
    • Avillach, P.1
  • 24
    • 83655197851 scopus 로고    scopus 로고
    • Constructing a semantic predication gold standard from the biomedical literature
    • [24] Kilicoglu, H., et al. Constructing a semantic predication gold standard from the biomedical literature. BMC Bioinformatics, 12, 2011, 486.
    • (2011) BMC Bioinformatics , vol.12 , pp. 486
    • Kilicoglu, H.1
  • 25
    • 85008690363 scopus 로고    scopus 로고
    • Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT), Adverse Drug Reactions Database, [web page] (2015.05.07), Available from: <>.
    • [25] Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT), Adverse Drug Reactions Database, [web page] (2015.05.07), Available from: < http://www.imi-protect.eu/adverseDrugReactions.shtml>.
  • 26
    • 84892918936 scopus 로고    scopus 로고
    • Defining a reference set to support methodological research in drug safety
    • [26] Ryan, P.B., et al. Defining a reference set to support methodological research in drug safety. Drug Saf. 36:Suppl 1 (2013), S33–S47.
    • (2013) Drug Saf. , vol.36 , pp. S33-S47
    • Ryan, P.B.1
  • 27
    • 84876548863 scopus 로고    scopus 로고
    • A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases
    • [27] Coloma, P.M., et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 36:1 (2013), 13–23.
    • (2013) Drug Saf. , vol.36 , Issue.1 , pp. 13-23
    • Coloma, P.M.1
  • 28
    • 84939565534 scopus 로고    scopus 로고
    • Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series
    • [28] Schuemie, M.J., et al. Detecting adverse drug reactions following long-term exposure in longitudinal observational data: the exposure-adjusted self-controlled case series. Stat. Meth. Med. Res., 2014.
    • (2014) Stat. Meth. Med. Res.
    • Schuemie, M.J.1
  • 29
    • 84892947900 scopus 로고    scopus 로고
    • Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases
    • [29] Schuemie, M.J., et al. Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases. Drug Saf. 36:Suppl 1 (2013), S159–S169.
    • (2013) Drug Saf. , vol.36 , pp. S159-S169
    • Schuemie, M.J.1
  • 30
    • 78751688048 scopus 로고    scopus 로고
    • Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership
    • [30] Stang, P.E., et al. Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership. Ann. Intern. Med. 153:9 (2010), 600–606.
    • (2010) Ann. Intern. Med. , vol.153 , Issue.9 , pp. 600-606
    • Stang, P.E.1
  • 31
    • 34547488686 scopus 로고    scopus 로고
    • Drug-Induced Diseases: Prevention, Detection and Management
    • second ed. American Society of Health-System Pharmacists (ASHP)
    • [31] Tisdale, J., Miller, D., Drug-Induced Diseases: Prevention, Detection and Management. second ed., 2010, American Society of Health-System Pharmacists (ASHP).
    • (2010)
    • Tisdale, J.1    Miller, D.2
  • 32
    • 71749097452 scopus 로고    scopus 로고
    • The EU-ADR project: preliminary results and perspective
    • [32] Trifiro, G., et al. The EU-ADR project: preliminary results and perspective. Stud. Health Technol. Inform. 148 (2009), 43–49.
    • (2009) Stud. Health Technol. Inform. , vol.148 , pp. 43-49
    • Trifiro, G.1
  • 33
    • 85008608649 scopus 로고    scopus 로고
    • CredibleMeds(R), [web page] (2015.06.18), Available from: <>.
    • [33] CredibleMeds(R), [web page] (2015.06.18), Available from: < https://www.crediblemeds.org/>.
  • 34
    • 84879081921 scopus 로고    scopus 로고
    • Assessing cardiovascular drug safety for clinical decision-making
    • [34] Woosley, R.L., Romero, K., Assessing cardiovascular drug safety for clinical decision-making. Nat. Rev. Cardiol. 10:6 (2013), 330–337.
    • (2013) Nat. Rev. Cardiol. , vol.10 , Issue.6 , pp. 330-337
    • Woosley, R.L.1    Romero, K.2
  • 35
    • 85008647494 scopus 로고    scopus 로고
    • Usagi, [web page] (2015.05.21 2015.06.17), Available from: <>.
    • [35] Usagi, [web page] (2015.05.21 2015.06.17), Available from: < http://www.ohdsi.org/web/wiki/doku.php?id=documentation:software:usagi>.
  • 36
    • 78650847582 scopus 로고    scopus 로고
    • An experimental comparison of cross-validation techniques for estimating the area under the ROC curve
    • [36] Airola, A., et al. An experimental comparison of cross-validation techniques for estimating the area under the ROC curve. Comput. Stat. Data Anal. 55:4 (2011), 1828–1844.
    • (2011) Comput. Stat. Data Anal. , vol.55 , Issue.4 , pp. 1828-1844
    • Airola, A.1
  • 37
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • [37] DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:3 (1988), 837–845.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 38
    • 85008695368 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing, R Foundation for Statistical Computing, R Core Team, Vienna, Austria.
    • [38] R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2015, R Core Team, Vienna, Austria.
    • (2015)
  • 39
    • 84873670495 scopus 로고    scopus 로고
    • Massive parallelization of serial inference algorithms for a complex generalized linear model
    • [39] Suchard, M.A., et al. Massive parallelization of serial inference algorithms for a complex generalized linear model. ACM Trans. Model. Comput. Simul. 23:1 (2013), 1–17.
    • (2013) ACM Trans. Model. Comput. Simul. , vol.23 , Issue.1 , pp. 1-17
    • Suchard, M.A.1
  • 40
    • 84958233708 scopus 로고    scopus 로고
    • Evidence of misclassification of drug-event associations classified as gold standard 'negative controls' by the observational medical outcomes partnership (OMOP)
    • [40] Hauben, M., Aronson, J.K., Ferner, R.E., Evidence of misclassification of drug-event associations classified as gold standard 'negative controls' by the observational medical outcomes partnership (OMOP). Drug Saf. 39:5 (2016), 421–432.
    • (2016) Drug Saf. , vol.39 , Issue.5 , pp. 421-432
    • Hauben, M.1    Aronson, J.K.2    Ferner, R.E.3
  • 41
    • 84892916187 scopus 로고    scopus 로고
    • Evaluating performance of risk identification methods through a large-scale simulation of observational data
    • [41] Ryan, P., Schuemie, M., Evaluating performance of risk identification methods through a large-scale simulation of observational data. Drug Saf. 36:1 (2013), 171–180.
    • (2013) Drug Saf. , vol.36 , Issue.1 , pp. 171-180
    • Ryan, P.1    Schuemie, M.2
  • 42
    • 84925709587 scopus 로고    scopus 로고
    • Text mining for adverse drug events: the promise, challenges, and state of the art
    • [42] Harpaz, R., et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37:10 (2014), 777–790.
    • (2014) Drug Saf. , vol.37 , Issue.10 , pp. 777-790
    • Harpaz, R.1
  • 43
    • 84938571741 scopus 로고    scopus 로고
    • A supervised adverse drug reaction signalling framework imitating Bradford Hill's causality considerations
    • [43] Reps, J.M., et al. A supervised adverse drug reaction signalling framework imitating Bradford Hill's causality considerations. J. Biomed. Inform. 56 (2015), 356–368.
    • (2015) J. Biomed. Inform. , vol.56 , pp. 356-368
    • Reps, J.M.1
  • 44
    • 85008664662 scopus 로고    scopus 로고
    • FDA Adverse Event Reporting System (FAERS), Latest Quarterly Data Files, [web page] 2015.09.29 2015.11.13]; Available from: <>.
    • [44] FDA Adverse Event Reporting System (FAERS), Latest Quarterly Data Files, [web page] 2015.09.29 2015.11.13]; Available from: < http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm>.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.