메뉴 건너뛰기




Volumn 55, Issue 4, 2011, Pages 1828-1844

An experimental comparison of cross-validation techniques for estimating the area under the ROC curve

Author keywords

Area under the ROC curve; Classifier performance estimation; Conditional AUC estimation; Cross validation; Leave pair out cross validation

Indexed keywords

ALTERNATIVE APPROACH; AREA UNDER THE ROC CURVE; CLASSIFICATION PERFORMANCE; CLASSIFIER PERFORMANCE ESTIMATION; CONDITIONAL AUC ESTIMATION; CROSS VALIDATION; CROSS-VALIDATION TECHNIQUE; EFFICIENT ALGORITHM; EXPERIMENTAL COMPARISON; EXTENSIVE SIMULATIONS; LEAST SQUARE; PERFORMANCE MEASURE; PREDICTIVE MODELS; SMALL DATA SET;

EID: 78650847582     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2010.11.018     Document Type: Article
Times cited : (131)

References (47)
  • 3
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for proteinprotein interaction extraction with evaluation of cross-corpus learning
    • A. Airola, S. Pyysalo, J. Bjrne, T. Pahikkala, F. Ginter, and T. Salakoski All-paths graph kernel for proteinprotein interaction extraction with evaluation of cross-corpus learning BMC Bioinformatics 9 Suppl. 11 2008 S2
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 11 , pp. 2
    • Airola, A.1    Pyysalo, S.2    Bjrne, J.3    Pahikkala, T.4    Ginter, F.5    Salakoski, T.6
  • 4
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • S. An, W. Liu, and S. Venkatesh Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression Pattern Recognition 40 8 2007 2154 2162
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 5
    • 33749030973 scopus 로고    scopus 로고
    • Identifying genes that contribute most to good classification in microarrays
    • S. Baker, and B. Kramer Identifying genes that contribute most to good classification in microarrays BMC Bioinformatics 7 2006 407
    • (2006) BMC Bioinformatics , vol.7 , pp. 407
    • Baker, S.1    Kramer, B.2
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U.M. Braga-Neto, and E.R. Dougherty Is cross-validation valid for small-sample microarray classification? Bioinformatics 20 3 2004 374 380
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 8
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. error rate minimization
    • C. Cortes, and M. Mohri AUC optimization vs. error rate minimization S. Thrun, L. Saul, B. Schlkopf, Advances in Neural Information Processing Systems vol. 16 2004 MIT Press Cambridge, Massachusetts, USA
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Cortes, C.1    Mohri, M.2
  • 10
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 1998 1895 1923
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 11
    • 14844357975 scopus 로고    scopus 로고
    • A response to Webb and Ting's "on the application of ROC analysis to predict classification performance under varying class distributions"
    • T. Fawcett, and P.A. Flach A response to Webb and Ting's "On the application of ROC analysis to predict classification performance under varying class distributions" Machine Learning 58 1 2005 33 38
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 33-38
    • Fawcett, T.1    Flach, P.A.2
  • 12
    • 78650804323 scopus 로고    scopus 로고
    • Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement
    • G. Forman, and M. Scholz Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement SIGKDD Explorations 12 1 2010 49 57
    • (2010) SIGKDD Explorations , vol.12 , Issue.1 , pp. 49-57
    • Forman, G.1    Scholz, M.2
  • 14
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, and B. De Moor Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks Bioinformatics 22 14 2006 184 190
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 184-190
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 16
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology 143 1 1982 29 36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 18
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference and Prediction
    • Second ed. Springer
    • T. Hastie, R. Tibshirani, and J. Friedman The Elements of Statistical Learning: Data Mining, Inference and Prediction Second ed. Springer Series in Statistics 2009 Springer
    • (2009) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 20
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A.E. Hoerl, and R.W. Kennard Ridge regression: biased estimation for nonorthogonal problems Technometrics 12 1970 55 67
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 22
    • 65749119811 scopus 로고    scopus 로고
    • Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
    • J.-H. Kim Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap Computational Statistics & Data Analysis 53 2009 3735 3745
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 3735-3745
    • Kim, J.-H.1
  • 24
    • 0002538983 scopus 로고    scopus 로고
    • Assessing error rate estimators: The leave-one-out method reconsidered
    • W. Krzanowski, and D. Hand Assessing error rate estimators: the leave-one-out method reconsidered Australian Journal of Statistics 39 1 1997 35 46
    • (1997) Australian Journal of Statistics , vol.39 , Issue.1 , pp. 35-46
    • Krzanowski, W.1    Hand, D.2
  • 25
    • 0003281852 scopus 로고
    • On estimation of characters obtained in statistical procedure of recognition
    • A. Luntz, and V. Brailovsky On estimation of characters obtained in statistical procedure of recognition Technicheskaya Kibernetica 3 1969 563 575
    • (1969) Technicheskaya Kibernetica , vol.3 , pp. 563-575
    • Luntz, A.1    Brailovsky, V.2
  • 29
    • 59349098809 scopus 로고    scopus 로고
    • Matrix representations, linear transformations, and kernels for disambiguation in natural language
    • T. Pahikkala, S. Pyysalo, J. Boberg, J. Jrvinen, and T. Salakoski Matrix representations, linear transformations, and kernels for disambiguation in natural language Machine Learning 74 2 2009 133 158
    • (2009) Machine Learning , vol.74 , Issue.2 , pp. 133-158
    • Pahikkala, T.1    Pyysalo, S.2    Boberg, J.3    Jrvinen, J.4    Salakoski, T.5
  • 32
    • 38349089209 scopus 로고    scopus 로고
    • Stratification bias in low signal microarray studies
    • B.J. Parker, S. Gunter, and J. Bedo Stratification bias in low signal microarray studies BMC Bioinformatics 8 2007 326
    • (2007) BMC Bioinformatics , vol.8 , pp. 326
    • Parker, B.J.1    Gunter, S.2    Bedo, J.3
  • 37
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Processing Letters 9 3 1999 293 300
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 38
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J.A. Swets Measuring the accuracy of diagnostic systems Science 240 4857 1988 1285 1293
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • Swets, J.A.1
  • 40
    • 48349140000 scopus 로고    scopus 로고
    • A critical analysis of variants of the AUC
    • S. Vanderlooy, and E. Hllermeier A critical analysis of variants of the AUC Machine Learning 72 3 2008 247 262
    • (2008) Machine Learning , vol.72 , Issue.3 , pp. 247-262
    • Vanderlooy, S.1    Hllermeier, E.2
  • 44
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 45
    • 0036158505 scopus 로고    scopus 로고
    • On the dual formulation of regularized linear systems with convex risks
    • T. Zhang On the dual formulation of regularized linear systems with convex risks Machine Learning 46 2002 91 129
    • (2002) Machine Learning , vol.46 , pp. 91-129
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.