-
1
-
-
21844440820
-
Generalization bounds for the area under the ROC curve
-
S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth Generalization bounds for the area under the ROC curve Journal of Machine Learning Research 6 2005 393 425
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 393-425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
2
-
-
79956360897
-
A comparison of AUC estimators in small-sample studies
-
A. Airola, T. Pahikkala, W. Waegeman, B. De Baets, and T. Salakoski A comparison of AUC estimators in small-sample studies S. Deroski, P. Geurts, J. Rousu, Proceedings of the Third International Workshop on Machine Learning in Systems Biology MLSB'09 2009 Helsinki University Printing House Helsinki, Finland 15 23
-
(2009)
Proceedings of the Third International Workshop on Machine Learning in Systems Biology
, pp. 15-23
-
-
Airola, A.1
Pahikkala, T.2
Waegeman, W.3
De Baets, B.4
Salakoski, T.5
-
3
-
-
56649091413
-
All-paths graph kernel for proteinprotein interaction extraction with evaluation of cross-corpus learning
-
A. Airola, S. Pyysalo, J. Bjrne, T. Pahikkala, F. Ginter, and T. Salakoski All-paths graph kernel for proteinprotein interaction extraction with evaluation of cross-corpus learning BMC Bioinformatics 9 Suppl. 11 2008 S2
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.SUPPL. 11
, pp. 2
-
-
Airola, A.1
Pyysalo, S.2
Bjrne, J.3
Pahikkala, T.4
Ginter, F.5
Salakoski, T.6
-
4
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
S. An, W. Liu, and S. Venkatesh Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression Pattern Recognition 40 8 2007 2154 2162
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
5
-
-
33749030973
-
Identifying genes that contribute most to good classification in microarrays
-
S. Baker, and B. Kramer Identifying genes that contribute most to good classification in microarrays BMC Bioinformatics 7 2006 407
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 407
-
-
Baker, S.1
Kramer, B.2
-
6
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A.P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
7
-
-
1342330535
-
Is cross-validation valid for small-sample microarray classification?
-
U.M. Braga-Neto, and E.R. Dougherty Is cross-validation valid for small-sample microarray classification? Bioinformatics 20 3 2004 374 380
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 374-380
-
-
Braga-Neto, U.M.1
Dougherty, E.R.2
-
9
-
-
37149011781
-
An alternative ranking problem for search engines
-
C. Demetrescu, Springer Berlin, Heidelberg, Germany
-
C. Cortes, M. Mohri, and A. Rastogi An alternative ranking problem for search engines C. Demetrescu, Proceedings of the 6th Workshop on Experimental Algorithms Lecture Notes in Computer Science vol. 4525 2007 Springer Berlin, Heidelberg, Germany 1 21
-
(2007)
Proceedings of the 6th Workshop on Experimental Algorithms. Lecture Notes in Computer Science
, vol.4525
, pp. 1-21
-
-
Cortes, C.1
Mohri, M.2
Rastogi, A.3
-
10
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 1998 1895 1923
-
(1998)
Neural Computation
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
11
-
-
14844357975
-
A response to Webb and Ting's "on the application of ROC analysis to predict classification performance under varying class distributions"
-
T. Fawcett, and P.A. Flach A response to Webb and Ting's "On the application of ROC analysis to predict classification performance under varying class distributions" Machine Learning 58 1 2005 33 38
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 33-38
-
-
Fawcett, T.1
Flach, P.A.2
-
12
-
-
78650804323
-
Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement
-
G. Forman, and M. Scholz Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement SIGKDD Explorations 12 1 2010 49 57
-
(2010)
SIGKDD Explorations
, vol.12
, Issue.1
, pp. 49-57
-
-
Forman, G.1
Scholz, M.2
-
14
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
-
O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, and B. De Moor Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks Bioinformatics 22 14 2006 184 190
-
(2006)
Bioinformatics
, vol.22
, Issue.14
, pp. 184-190
-
-
Gevaert, O.1
De Smet, F.2
Timmerman, D.3
Moreau, Y.4
De Moor, B.5
-
15
-
-
77951964158
-
Small-sample precision of ROC-related estimates
-
B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E.R. Dougherty Small-sample precision of ROC-related estimates Bioinformatics 26 6 2010 822 830
-
(2010)
Bioinformatics
, vol.26
, Issue.6
, pp. 822-830
-
-
Hanczar, B.1
Hua, J.2
Sima, C.3
Weinstein, J.4
Bittner, M.5
Dougherty, E.R.6
-
16
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology 143 1 1982 29 36
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
18
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
Second ed. Springer
-
T. Hastie, R. Tibshirani, and J. Friedman The Elements of Statistical Learning: Data Mining, Inference and Prediction Second ed. Springer Series in Statistics 2009 Springer
-
(2009)
Springer Series in Statistics
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A.E. Hoerl, and R.W. Kennard Ridge regression: biased estimation for nonorthogonal problems Technometrics 12 1970 55 67
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
22
-
-
65749119811
-
Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
-
J.-H. Kim Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap Computational Statistics & Data Analysis 53 2009 3735 3745
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, pp. 3735-3745
-
-
Kim, J.-H.1
-
24
-
-
0002538983
-
Assessing error rate estimators: The leave-one-out method reconsidered
-
W. Krzanowski, and D. Hand Assessing error rate estimators: the leave-one-out method reconsidered Australian Journal of Statistics 39 1 1997 35 46
-
(1997)
Australian Journal of Statistics
, vol.39
, Issue.1
, pp. 35-46
-
-
Krzanowski, W.1
Hand, D.2
-
25
-
-
0003281852
-
On estimation of characters obtained in statistical procedure of recognition
-
A. Luntz, and V. Brailovsky On estimation of characters obtained in statistical procedure of recognition Technicheskaya Kibernetica 3 1969 563 575
-
(1969)
Technicheskaya Kibernetica
, vol.3
, pp. 563-575
-
-
Luntz, A.1
Brailovsky, V.2
-
27
-
-
60949111664
-
Exact and efficient leave-pair-out cross-validation for ranking RLS
-
Honkela, T., Pöllä, M., Paukkeri, M.-S., Simula, O. (Eds.) Helsinki University of Technology
-
Pahikkala, T., Airola, A., Boberg, J., Salakoski, T., 2008. Exact and efficient leave-pair-out cross-validation for ranking RLS. In: Honkela, T., Pll, M., Paukkeri, M.-S., Simula, O. (Eds.), Proceedings of the 2nd International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning. Helsinki University of Technology. pp. 18.
-
(2008)
Proceedings of the 2nd International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning
, pp. 1-8
-
-
Pahikkala, T.1
Airola, A.2
Boberg, J.3
Salakoski, T.4
-
28
-
-
84862520910
-
Fast n-fold cross-validation for regularized least-squares
-
T. Pahikkala, J. Boberg, and T. Salakoski Fast n-fold cross-validation for regularized least-squares T. Honkela, T. Raiko, J. Kortela, H. Valpola, Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence 2006 Otamedia Espoo, Finland 83 90
-
(2006)
Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence
, pp. 83-90
-
-
Pahikkala, T.1
Boberg, J.2
Salakoski, T.3
-
29
-
-
59349098809
-
Matrix representations, linear transformations, and kernels for disambiguation in natural language
-
T. Pahikkala, S. Pyysalo, J. Boberg, J. Jrvinen, and T. Salakoski Matrix representations, linear transformations, and kernels for disambiguation in natural language Machine Learning 74 2 2009 133 158
-
(2009)
Machine Learning
, vol.74
, Issue.2
, pp. 133-158
-
-
Pahikkala, T.1
Pyysalo, S.2
Boberg, J.3
Jrvinen, J.4
Salakoski, T.5
-
30
-
-
60949112451
-
An efficient algorithm for learning to rank from preference graphs
-
T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and J. Jrvinen An efficient algorithm for learning to rank from preference graphs Machine Learning 75 1 2009 129 165
-
(2009)
Machine Learning
, vol.75
, Issue.1
, pp. 129-165
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Boberg, J.4
Jrvinen, J.5
-
31
-
-
60949111976
-
Learning to rank with pairwise regularized least-squares
-
Joachims, T., Li, H., Liu, T.-Y., Zhai, C. (Eds.)
-
Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., Salakoski, T., 2007. Learning to rank with pairwise regularized least-squares. In: Joachims, T., Li, H., Liu, T.-Y., Zhai, C. (Eds.), SIGIR 2007 Workshop on Learning to Rank for Information Retrieval. pp. 2733.
-
(2007)
SIGIR 2007 Workshop on Learning to Rank for Information Retrieval
, pp. 27-33
-
-
Pahikkala, T.1
Tsivtsivadze, E.2
Airola, A.3
Boberg, J.4
Salakoski, T.5
-
32
-
-
38349089209
-
Stratification bias in low signal microarray studies
-
B.J. Parker, S. Gunter, and J. Bedo Stratification bias in low signal microarray studies BMC Bioinformatics 8 2007 326
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 326
-
-
Parker, B.J.1
Gunter, S.2
Bedo, J.3
-
35
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
Morgan Kaufmann Publishers Inc. San Francisco, California, USA
-
C. Saunders, A. Gammerman, and V. Vovk Ridge regression learning algorithm in dual variables Proceedings of the Fifteenth International Conference on Machine Learning 1998 Morgan Kaufmann Publishers Inc. San Francisco, California, USA 515 521
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
37
-
-
0032638628
-
Least squares support vector machine classifiers
-
J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Processing Letters 9 3 1999 293 300
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
38
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
J.A. Swets Measuring the accuracy of diagnostic systems Science 240 4857 1988 1285 1293
-
(1988)
Science
, vol.240
, Issue.4857
, pp. 1285-1293
-
-
Swets, J.A.1
-
40
-
-
48349140000
-
A critical analysis of variants of the AUC
-
S. Vanderlooy, and E. Hllermeier A critical analysis of variants of the AUC Machine Learning 72 3 2008 247 262
-
(2008)
Machine Learning
, vol.72
, Issue.3
, pp. 247-262
-
-
Vanderlooy, S.1
Hllermeier, E.2
-
44
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
-
(1945)
Biometrics
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
45
-
-
0036158505
-
On the dual formulation of regularized linear systems with convex risks
-
T. Zhang On the dual formulation of regularized linear systems with convex risks Machine Learning 46 2002 91 129
-
(2002)
Machine Learning
, vol.46
, pp. 91-129
-
-
Zhang, T.1
|