메뉴 건너뛰기




Volumn 199, Issue 1, 2017, Pages

Characterization of a novel iron acquisition activity that coordinates the iron response with population density under iron-replete conditions in Bacillus subtilis

Author keywords

Efe acquisition factor; EfeUOB (ywbLMN); Fe(II) Fe(III); Iron chelation; Iron reduction; Siderophore

Indexed keywords

ENTEROCHELIN; IRON; SIDEROPHORE; TRANSCRIPTOME; BACILLIBACTIN; CARRIER PROTEIN; OLIGOPEPTIDE;

EID: 85008517975     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.00487-16     Document Type: Article
Times cited : (10)

References (57)
  • 1
    • 84891540693 scopus 로고    scopus 로고
    • An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes
    • Jin CW, Ye YQ, Zheng SJ. 2014. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113:7-18. https://doi.org/10.1093/aob/mct249.
    • (2014) Ann Bot , vol.113 , pp. 7-18
    • Jin, C.W.1    Ye, Y.Q.2    Zheng, S.J.3
  • 3
    • 18544384019 scopus 로고
    • Oxidation of tartaric acid in the presence of iron
    • Fenton HJH. 1894. Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899-910.
    • (1894) J Chem Soc , vol.65 , pp. 899-910
    • Fenton, H.J.H.1
  • 4
    • 0018666716 scopus 로고
    • Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds
    • Hassan HM, Fridovich I. 1979. Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385-395. https://doi.org/10.1016/0003-9861(79)90289-3.
    • (1979) Arch Biochem Biophys , vol.196 , pp. 385-395
    • Hassan, H.M.1    Fridovich, I.2
  • 5
    • 34250942854 scopus 로고
    • On the catalysis of hydroperoxide
    • Haber F, Weiss H. 1932. On the catalysis of hydroperoxide. Naturwissenschaften 20:948-950. https://doi.org/10.1007/BF01504715.
    • (1932) Naturwissenschaften , vol.20 , pp. 948-950
    • Haber, F.1    Weiss, H.2
  • 6
    • 0035985581 scopus 로고    scopus 로고
    • How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis
    • Imlay JA. 2002. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111-153. https://doi.org/10.1016/S0065-2911(02)46003-1.
    • (2002) Adv Microb Physiol , vol.46 , pp. 111-153
    • Imlay, J.A.1
  • 7
    • 0023886170 scopus 로고
    • DNA damage and oxygen radical toxicity
    • Imlay JA, Linn S. 1988. DNA damage and oxygen radical toxicity. Science 240:1302-1309. https://doi.org/10.1126/science.3287616.
    • (1988) Science , vol.240 , pp. 1302-1309
    • Imlay, J.A.1    Linn, S.2
  • 8
    • 0034152767 scopus 로고    scopus 로고
    • Oxidative stress in bacteria and protein damage by reactive oxygen species
    • Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3-8.
    • (2000) Int Microbiol , vol.3 , pp. 3-8
    • Cabiscol, E.1    Tamarit, J.2    Ros, J.3
  • 9
    • 0019804120 scopus 로고
    • Toxic drug effects associated with oxygen metabolism
    • Kappus H, Sies H. 1981. Toxic drug effects associated with oxygen metabolism. Experientia 37:1233-1241. https://doi.org/10.1007/BF01948335.
    • (1981) Experientia , vol.37 , pp. 1233-1241
    • Kappus, H.1    Sies, H.2
  • 10
    • 0023990989 scopus 로고
    • Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase
    • Farr SB, Touati D, Kogoma T. 1988. Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase. J Bacteriol 170: 1837-1842.
    • (1988) J Bacteriol , vol.170 , pp. 1837-1842
    • Farr, S.B.1    Touati, D.2    Kogoma, T.3
  • 11
    • 0036035079 scopus 로고    scopus 로고
    • Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon
    • Baichoo N, Wang T, Ye R, Helmann JD. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613-1629. https://doi.org/10.1046/j.1365-2958.2002.03113.x.
    • (2002) Mol Microbiol , vol.45 , pp. 1613-1629
    • Baichoo, N.1    Wang, T.2    Ye, R.3    Helmann, J.D.4
  • 12
    • 0142214661 scopus 로고    scopus 로고
    • Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis
    • Fuangthong M, Helmann JD. 2003. Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185: 6348-6357. https://doi.org/10.1128/JB.185.21.6348-6357.2003.
    • (2003) J Bacteriol , vol.185 , pp. 6348-6357
    • Fuangthong, M.1    Helmann, J.D.2
  • 13
    • 0036837766 scopus 로고    scopus 로고
    • Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence
    • Baichoo N, Helmann JD. 2002. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826-5832. https://doi.org/10.1128/JB.184.21.5826-5832.2002.
    • (2002) J Bacteriol , vol.184 , pp. 5826-5832
    • Baichoo, N.1    Helmann, J.D.2
  • 14
    • 0002053994 scopus 로고    scopus 로고
    • Iron chelation and siderophores
    • Winkelmann G, Carrano CJ (ed), Harwood Academic Publishers, Amsterdam, the Netherlands
    • Drechsel H, Winkelmann G. 1997. Iron chelation and siderophores, p 1-49. In Winkelmann G, Carrano CJ (ed), Transition metals in microbial metabolism. Harwood Academic Publishers, Amsterdam, the Netherlands.
    • (1997) Transition metals in microbial metabolism , pp. 1-49
    • Drechsel, H.1    Winkelmann, G.2
  • 16
    • 0033811814 scopus 로고    scopus 로고
    • Salicylic acid is not a bacterial siderophore: a theoretical study
    • Chipperfield JR, Ratledge C. 2000. Salicylic acid is not a bacterial siderophore: a theoretical study. BioMetals 13:165-168. https://doi.org/10.1023/A:1009227206890.
    • (2000) BioMetals , vol.13 , pp. 165-168
    • Chipperfield, J.R.1    Ratledge, C.2
  • 17
    • 84937780279 scopus 로고    scopus 로고
    • Recent developments in understanding the iron acquisition strategies of gram positive pathogens
    • Sheldon JR, Heinrichs DE. 2015. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 39:592-630. https://doi.org/10.1093/femsre/fuv009.
    • (2015) FEMS Microbiol Rev , vol.39 , pp. 592-630
    • Sheldon, J.R.1    Heinrichs, D.E.2
  • 18
    • 0027945605 scopus 로고
    • Microbial iron transport
    • Guerinot ML. 1994. Microbial iron transport. Annu Rev Microbiol 48: 743-772. https://doi.org/10.1146/annurev.mi.48.100194.003523.
    • (1994) Annu Rev Microbiol , vol.48 , pp. 743-772
    • Guerinot, M.L.1
  • 19
    • 0025914399 scopus 로고
    • Acquisition of iron by Legionella pneumophila: role of iron reductase
    • Johnson W, Varner L, Poch M. 1991. Acquisition of iron by Legionella pneumophila: role of iron reductase. Infect Immun 59:2376-2381.
    • (1991) Infect Immun , vol.59 , pp. 2376-2381
    • Johnson, W.1    Varner, L.2    Poch, M.3
  • 20
    • 0027620344 scopus 로고
    • Ferric reductases of Legionella pneumophila
    • Poch MT, Johnson W. 1993. Ferric reductases of Legionella pneumophila. BioMetals 6:107-114.
    • (1993) BioMetals , vol.6 , pp. 107-114
    • Poch, M.T.1    Johnson, W.2
  • 22
    • 0027491241 scopus 로고
    • The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin
    • Chen CY, Berish SA, Morse SA, Mietzner TA. 1993. The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 10: 311-318. https://doi.org/10.1111/j.1365-2958.1993.tb01957.x.
    • (1993) Mol Microbiol , vol.10 , pp. 311-318
    • Chen, C.Y.1    Berish, S.A.2    Morse, S.A.3    Mietzner, T.A.4
  • 23
    • 0027276444 scopus 로고
    • Iron acquisition by Helicobacter pylori: importance of human lactoferrin
    • Husson MO, Legrand D, Spik G, Leclerc H. 1993. Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect Immun 61:2694-2697.
    • (1993) Infect Immun , vol.61 , pp. 2694-2697
    • Husson, M.O.1    Legrand, D.2    Spik, G.3    Leclerc, H.4
  • 24
    • 0023806512 scopus 로고
    • Iron regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae
    • Stoebner JA, Payne SM. 1988. Iron regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun 56:2891-2895.
    • (1988) Infect Immun , vol.56 , pp. 2891-2895
    • Stoebner, J.A.1    Payne, S.M.2
  • 25
    • 0026445951 scopus 로고
    • Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gramnegative bacteria
    • Stojiljkovic I, Hantke K. 1992. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gramnegative bacteria. EMBO J 11:4359-4367.
    • (1992) EMBO J , vol.11 , pp. 4359-4367
    • Stojiljkovic, I.1    Hantke, K.2
  • 26
    • 0019348762 scopus 로고
    • Microbial iron compounds
    • Neilands JB. 1981. Microbial iron compounds. Annu Rev Biochem 50: 715-731. https://doi.org/10.1146/annurev.bi.50.070181.003435.
    • (1981) Annu Rev Biochem , vol.50 , pp. 715-731
    • Neilands, J.B.1
  • 28
    • 33646903912 scopus 로고    scopus 로고
    • FeOtransport of ferrous iron into bacteria
    • Cartron ML, Maddocks P, Gillingham CJ, Andrews SC. 2006. FeOtransport of ferrous iron into bacteria. BioMetals 19:143-157. https://doi.org/10.1007/s10534-006-0003-2.
    • (2006) BioMetals , vol.19 , pp. 143-157
    • Cartron, M.L.1    Maddocks, P.2    Gillingham, C.J.3    Andrews, S.C.4
  • 29
    • 0037341361 scopus 로고    scopus 로고
    • Molecular mechanisms of iron uptake in fungi
    • Kosman DJ. 2003. Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185-1197. https://doi.org/10.1046/j.1365-2958.2003.03368.x.
    • (2003) Mol Microbiol , vol.47 , pp. 1185-1197
    • Kosman, D.J.1
  • 30
    • 84879468540 scopus 로고    scopus 로고
    • The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron
    • Miethke M, Monteferrante CG, Marahiel MA, van Dijl JM. 2013. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Biochim Biophys Acta 1833:2267-2278. https://doi.org/10.1016/j.bbamcr.2013.05.027.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 2267-2278
    • Miethke, M.1    Monteferrante, C.G.2    Marahiel, M.A.3    van Dijl, J.M.4
  • 31
    • 0027194703 scopus 로고
    • Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2, 3-dihydroxybenzoic acid
    • Ito T. 1993. Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2, 3-dihydroxybenzoic acid. Appl Environ Microbiol 59:2343-2345.
    • (1993) Appl Environ Microbiol , vol.59 , pp. 2343-2345
    • Ito, T.1
  • 32
    • 0027522074 scopus 로고
    • Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfp0 and Escherichia coli entD genes
    • Grossman TH, Tuckman M, Ellestad S, Osburne MS. 1993. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfp0 and Escherichia coli entD genes. J Bacteriol 175:6203-6211.
    • (1993) J Bacteriol , vol.175 , pp. 6203-6211
    • Grossman, T.H.1    Tuckman, M.2    Ellestad, S.3    Osburne, M.S.4
  • 33
    • 0035831486 scopus 로고    scopus 로고
    • The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2, 3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin
    • May JJ, Wendrich TM, Marahiel MA. 2001. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2, 3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209-7217. https://doi.org/10.1074/jbc.M009140200.
    • (2001) J Biol Chem , vol.276 , pp. 7209-7217
    • May, J.J.1    Wendrich, T.M.2    Marahiel, M.A.3
  • 34
    • 0002993045 scopus 로고
    • Ferrienterobactin transport in Escherhichia coli
    • Winklemann G, van der Helm D, Neilands JB (ed), VCH Verlagsgesellschaft GmbH, Weinheim, Germany
    • Earhart CF. 1987. Ferrienterobactin transport in Escherhichia coli, p 67-81. In Winklemann G, van der Helm D, Neilands JB (ed), Iron transport in microbes, plants, and animals. VCH Verlagsgesellschaft GmbH, Weinheim, Germany.
    • (1987) Iron transport in microbes, plants, and animals , pp. 67-81
    • Earhart, C.F.1
  • 35
    • 0026520361 scopus 로고
    • Isolation and characterization of sfp: a gene that functions in the production of the lipopreptide biosurfactant, surfactin, in Bacillus subtilis
    • Nakano MM, Corbell N, Besson J, and Zuber P. 1992. Isolation and characterization of sfp: a gene that functions in the production of the lipopreptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313-321.
    • (1992) Mol Gen Genet , vol.232 , pp. 313-321
    • Nakano, M.M.1    Corbell, N.2    Besson, J.3    Zuber, P.4
  • 36
    • 23744516298 scopus 로고    scopus 로고
    • Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum sensing transcription factor ComA in Bacillus subtiilis
    • Comella N, Grossman AD. 2005. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum sensing transcription factor ComA in Bacillus subtiilis. Mol Micriobiol 57:1159-1174. https://doi.org/10.1111/j.1365-2958.2005.04749.x.
    • (2005) Mol Micriobiol , vol.57 , pp. 1159-1174
    • Comella, N.1    Grossman, A.D.2
  • 37
    • 0035883922 scopus 로고    scopus 로고
    • DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems
    • Ogura M, Yamaguchi H, Yoshida Ki, Fujita Y, Tanaka T. 2001. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res 29:3804-3813. https://doi.org/10.1093/nar/29.18.3804.
    • (2001) Nucleic Acids Res , vol.29 , pp. 3804-3813
    • Ogura, M.1    Yamaguchi, H.2    Yoshida, K.3    Fujita, Y.4    Tanaka, T.5
  • 38
    • 24644481914 scopus 로고    scopus 로고
    • Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response
    • Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD. 2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A 102:12554-12559. https://doi.org/10.1073/pnas.0505835102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 12554-12559
    • Auchtung, J.M.1    Lee, C.A.2    Monson, R.E.3    Lehman, A.P.4    Grossman, A.D.5
  • 39
    • 0344172832 scopus 로고    scopus 로고
    • Opening the iron box: transcriptional metalloregulation by the Fur protein
    • Escolar L, Perez-Martin J, de Lorenzo V. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181: 6223-6229.
    • (1999) J Bacteriol , vol.181 , pp. 6223-6229
    • Escolar, L.1    Perez-Martin, J.2    de Lorenzo, V.3
  • 40
    • 0000209741 scopus 로고
    • Organic matter mineralization with reduction of ferric iron in anaerobic sediments
    • Lovely DR, Phillips EJP. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51: 638-689.
    • (1986) Appl Environ Microbiol , vol.51 , pp. 638-689
    • Lovely, D.R.1    Phillips, E.J.P.2
  • 41
    • 0033117894 scopus 로고    scopus 로고
    • Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms
    • Vartivarian SE, Cowart RE. 1999. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys 364:75-82. https://doi.org/10.1006/abbi.1999.1109.
    • (1999) Arch Biochem Biophys , vol.364 , pp. 75-82
    • Vartivarian, S.E.1    Cowart, R.E.2
  • 42
    • 41649085415 scopus 로고    scopus 로고
    • Shewanella secretes flavins that mediate extracellular electron transfer
    • Marsili E, Baron DB, Shikhare ID, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968-3973. https://doi.org/10.1073/pnas.0710525105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 3968-3973
    • Marsili, E.1    Baron, D.B.2    Shikhare, I.D.3    Gralnick, J.A.4    Bond, D.R.5
  • 43
    • 15744374882 scopus 로고    scopus 로고
    • Metal ion homeostasis in Bacillus subtilis
    • Moore CM, Helmann JD. 2005. Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188-195. https://doi.org/10.1016/j.mib.2005.02.007.
    • (2005) Curr Opin Microbiol , vol.8 , pp. 188-195
    • Moore, C.M.1    Helmann, J.D.2
  • 44
    • 84864541698 scopus 로고    scopus 로고
    • Iron and quorum sensing coordinately regulate the expression of vulnibactin biosynthesis in Vibrio vulnificus
    • Wen Y, Kim IH, Son JS, Lee BH, Kim KS. 2012. Iron and quorum sensing coordinately regulate the expression of vulnibactin biosynthesis in Vibrio vulnificus. J Biol Chem 287:26727-26739. https://doi.org/10.1074/jbc.M112.374165.
    • (2012) J Biol Chem , vol.287 , pp. 26727-26739
    • Wen, Y.1    Kim, I.H.2    Son, J.S.3    Lee, B.H.4    Kim, K.S.5
  • 45
    • 0019168132 scopus 로고
    • Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides
    • Vasantha N, Freese E. 1980. Enzyme changes during Bacillus subtilis sporulation caused by deprivation of guanine nucleotides. J Bacteriol 144:1119-1125.
    • (1980) J Bacteriol , vol.144 , pp. 1119-1125
    • Vasantha, N.1    Freese, E.2
  • 47
    • 0024118243 scopus 로고
    • Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis
    • Perego M, Spiegelman GB, Hoch JA. 1988. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol Microbiol 2:689-699. https://doi.org/10.1111/j.1365-2958.1988.tb00079.x.
    • (1988) Mol Microbiol , vol.2 , pp. 689-699
    • Perego, M.1    Spiegelman, G.B.2    Hoch, J.A.3
  • 48
    • 84883278830 scopus 로고    scopus 로고
    • Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis
    • Konkol MA, Blair KM, Kearns DB. 2013. Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol 195:4085-4093. https://doi.org/10.1128/JB.00696-13.
    • (2013) J Bacteriol , vol.195 , pp. 4085-4093
    • Konkol, M.A.1    Blair, K.M.2    Kearns, D.B.3
  • 49
    • 0028284877 scopus 로고
    • Biochemical and genetic characterization of a competence pheromone from B. subtilis
    • Magnuson R, Solomon J, Grossman AD. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77: 207-216. https://doi.org/10.1016/0092-8674(94)90313-1.
    • (1994) Cell , vol.77 , pp. 207-216
    • Magnuson, R.1    Solomon, J.2    Grossman, A.D.3
  • 50
    • 84926419343 scopus 로고    scopus 로고
    • Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis
    • Boguslawski KM, Hill PA, Griffith KL. 2015. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol Microbiol 96:325-348. https://doi.org/10.1111/mmi.12939.
    • (2015) Mol Microbiol , vol.96 , pp. 325-348
    • Boguslawski, K.M.1    Hill, P.A.2    Griffith, K.L.3
  • 51
    • 34249997536 scopus 로고    scopus 로고
    • Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis
    • Auchtung JM, Lee CA, Garrison KL, Grossman AD. 2007. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol Microbiol 64: 1515-1528. https://doi.org/10.1111/j.1365-2958.2007.05748.x.
    • (2007) Mol Microbiol , vol.64 , pp. 1515-1528
    • Auchtung, J.M.1    Lee, C.A.2    Garrison, K.L.3    Grossman, A.D.4
  • 53
    • 34447321852 scopus 로고    scopus 로고
    • Enhancements and modification of primer design program Primer3
    • Koressaar T, Remm M. 2007. Enhancements and modification of primer design program Primer3. Bioinformatics 23:1289-1291. https://doi.org/10.1093/bioinformatics/btm091.
    • (2007) Bioinformatics , vol.23 , pp. 1289-1291
    • Koressaar, T.1    Remm, M.2
  • 55
    • 47049095730 scopus 로고    scopus 로고
    • A degenerate tripartite DNA binding site required for activation of ComA-dependent quorum response gene expression in Bacillus subtilis
    • Griffith KL, Grossman AD. 2008. A degenerate tripartite DNA binding site required for activation of ComA-dependent quorum response gene expression in Bacillus subtilis. J Mol Biol 381:261-275. https://doi.org/10.1016/j.jmb.2008.06.035.
    • (2008) J Mol Biol , vol.381 , pp. 261-275
    • Griffith, K.L.1    Grossman, A.D.2
  • 57
    • 33745924114 scopus 로고    scopus 로고
    • Modulation of the ComAdependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides
    • Auchtung JM, Lee CA, Grossman AD. 2006. Modulation of the ComAdependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 188:5273-5285.
    • (2006) J Bacteriol , vol.188 , pp. 5273-5285
    • Auchtung, J.M.1    Lee, C.A.2    Grossman, A.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.