-
1
-
-
40849093169
-
Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos
-
[1] Alben, S., Shelley, M.J., Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett., 100(7), 2008, 074301.
-
(2008)
Phys. Rev. Lett.
, vol.100
, Issue.7
-
-
Alben, S.1
Shelley, M.J.2
-
2
-
-
1342341372
-
Well-posedness of Vortex Sheets with Surface Tension
-
ProQuest LLC Ann Arbor, MI Ph.D. thesis, Duke University
-
[2] Ambrose, D.M., Well-posedness of Vortex Sheets with Surface Tension. 2002, ProQuest LLC, Ann Arbor, MI Ph.D. thesis, Duke University.
-
(2002)
-
-
Ambrose, D.M.1
-
3
-
-
1342266714
-
Well-posedness of vortex sheets with surface tension
-
(electronic)
-
[3] Ambrose, D.M., Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35:1 (2003), 211–244 (electronic).
-
(2003)
SIAM J. Math. Anal.
, vol.35
, Issue.1
, pp. 211-244
-
-
Ambrose, D.M.1
-
4
-
-
16644399272
-
Well-posedness of two-phase Hele–Shaw flow without surface tension
-
[4] Ambrose, D.M., Well-posedness of two-phase Hele–Shaw flow without surface tension. European J. Appl. Math. 15:5 (2004), 597–607.
-
(2004)
European J. Appl. Math.
, vol.15
, Issue.5
, pp. 597-607
-
-
Ambrose, D.M.1
-
5
-
-
84896374602
-
The zero surface tension limit of two-dimensional interfacial Darcy flow
-
[5] Ambrose, D.M., The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16:1 (2014), 105–143.
-
(2014)
J. Math. Fluid Mech.
, vol.16
, Issue.1
, pp. 105-143
-
-
Ambrose, D.M.1
-
6
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
[6] Ambrose, D.M., Masmoudi, N., The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math. 58:10 (2005), 1287–1315.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, Issue.10
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
8
-
-
0020191249
-
Generalized vortex methods for free-surface flow problems
-
[8] Baker, G.R., Meiron, D.I., Orszag, S.A., Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123 (1982), 477–501.
-
(1982)
J. Fluid Mech.
, vol.123
, pp. 477-501
-
-
Baker, G.R.1
Meiron, D.I.2
Orszag, S.A.3
-
9
-
-
77955068691
-
Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves
-
[9] Baldi, P., Toland, J.F., Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves. Interfaces Free Bound. 12:1 (2010), 1–22.
-
(2010)
Interfaces Free Bound.
, vol.12
, Issue.1
, pp. 1-22
-
-
Baldi, P.1
Toland, J.F.2
-
10
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
[10] Beale, J.T., Hou, T.Y., Lowengrub, J.S., Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math. 46:9 (1993), 1269–1301.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, Issue.9
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.S.3
-
11
-
-
78049501969
-
Strichartz estimates for the water-wave problem with surface tension
-
[11] Christianson, H., Hur, V.M., Staffilani, G., Strichartz estimates for the water-wave problem with surface tension. Comm. Partial Differential Equations 35:12 (2010), 2195–2252.
-
(2010)
Comm. Partial Differential Equations
, vol.35
, Issue.12
, pp. 2195-2252
-
-
Christianson, H.1
Hur, V.M.2
Staffilani, G.3
-
12
-
-
70350325132
-
Interface evolution: water waves in 2-D
-
[12] Córdoba, A., Córdoba, D., Gancedo, F., Interface evolution: water waves in 2-D. Adv. Math. 223:1 (2010), 120–173.
-
(2010)
Adv. Math.
, vol.223
, Issue.1
, pp. 120-173
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
13
-
-
78751624212
-
Interface evolution: the Hele–Shaw and Muskat problems
-
[13] Córdoba, A., Córdoba, D., Gancedo, F., Interface evolution: the Hele–Shaw and Muskat problems. Ann. of Math. (2) 173:1 (2011), 477–542.
-
(2011)
Ann. of Math. (2)
, vol.173
, Issue.1
, pp. 477-542
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
14
-
-
84355162870
-
Validity of the Korteweg–de Vries approximation for the two-dimensional water wave problem in the arc length formulation
-
[14] Düll, W.-P., Validity of the Korteweg–de Vries approximation for the two-dimensional water wave problem in the arc length formulation. Comm. Pure Appl. Math. 65:3 (2012), 381–429.
-
(2012)
Comm. Pure Appl. Math.
, vol.65
, Issue.3
, pp. 381-429
-
-
Düll, W.-P.1
-
15
-
-
33846818718
-
Dynamics near unstable, interfacial fluids
-
[15] Guo, Y., Hallstrom, C., Spirn, D., Dynamics near unstable, interfacial fluids. Comm. Math. Phys. 270:3 (2007), 635–689.
-
(2007)
Comm. Math. Phys.
, vol.270
, Issue.3
, pp. 635-689
-
-
Guo, Y.1
Hallstrom, C.2
Spirn, D.3
-
16
-
-
84870809773
-
Computations of fully nonlinear hydroelastic solitary waves on deep water
-
[16] Guyenne, P., Părău, E.I., Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713 (2012), 307–329.
-
(2012)
J. Fluid Mech.
, vol.713
, pp. 307-329
-
-
Guyenne, P.1
Părău, E.I.2
-
17
-
-
0004186403
-
Harmonic Analysis
-
Addison–Wesley Publishing Company Advanced Book Program Reading, MA
-
[17] Helson, H., Harmonic Analysis. 1983, Addison–Wesley Publishing Company Advanced Book Program, Reading, MA.
-
(1983)
-
-
Helson, H.1
-
18
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
[18] Hou, T.Y., Lowengrub, J.S., Shelley, M.J., Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114:2 (1994), 312–338.
-
(1994)
J. Comput. Phys.
, vol.114
, Issue.2
, pp. 312-338
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
19
-
-
0030870172
-
The long-time motion of vortex sheets with surface tension
-
[19] Hou, T.Y., Lowengrub, J.S., Shelley, M.J., The long-time motion of vortex sheets with surface tension. Phys. Fluids 9:7 (1997), 1933–1954.
-
(1997)
Phys. Fluids
, vol.9
, Issue.7
, pp. 1933-1954
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
20
-
-
30544447638
-
Applied Analysis
-
World Scientific Publishing Co., Inc. River Edge, NJ
-
[20] Hunter, J.K., Nachtergaele, B., Applied Analysis. 2001, World Scientific Publishing Co., Inc., River Edge, NJ.
-
(2001)
-
-
Hunter, J.K.1
Nachtergaele, B.2
-
21
-
-
0242618501
-
Vorticity and Incompressible Flow
-
Cambridge University Press Cambridge
-
[21] Majda, A.J., Bertozzi, A.L., Vorticity and Incompressible Flow. Cambridge Texts Appl. Math., vol. 27, 2002, Cambridge University Press, Cambridge.
-
(2002)
Cambridge Texts Appl. Math.
, vol.27
-
-
Majda, A.J.1
Bertozzi, A.L.2
-
22
-
-
84880735044
-
Three dimensional flexural-gravity waves
-
[22] Milewski, P.A., Wang, Z., Three dimensional flexural-gravity waves. Stud. Appl. Math. 131:2 (2013), 135–148.
-
(2013)
Stud. Appl. Math.
, vol.131
, Issue.2
, pp. 135-148
-
-
Milewski, P.A.1
Wang, Z.2
-
23
-
-
79960479697
-
Modelling nonlinear hydroelastic waves
-
[23] Plotnikov, P.I., Toland, J.F., Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369:1947 (2011), 2942–2956.
-
(2011)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.369
, Issue.1947
, pp. 2942-2956
-
-
Plotnikov, P.I.1
Toland, J.F.2
-
24
-
-
0028838896
-
Of ocean waves and sea ice
-
[24] Squire, V.A., Dugan, J.P., Wadhams, P., Rottier, P.J., Liu, A.K., Of ocean waves and sea ice. Annu. Rev. Fluid Mech. 27:1 (1995), 115–168.
-
(1995)
Annu. Rev. Fluid Mech.
, vol.27
, Issue.1
, pp. 115-168
-
-
Squire, V.A.1
Dugan, J.P.2
Wadhams, P.3
Rottier, P.J.4
Liu, A.K.5
-
25
-
-
0003278082
-
Partial Differential Equations III. Nonlinear Equations
-
second ed. Springer New York
-
[25] Taylor, M.E., Partial Differential Equations III. Nonlinear Equations. second ed. Appl. Math. Sci., vol. 117, 2011, Springer, New York.
-
(2011)
Appl. Math. Sci.
, vol.117
-
-
Taylor, M.E.1
-
27
-
-
45049088237
-
Steady periodic hydroelastic waves
-
[27] Toland, J.F., Steady periodic hydroelastic waves. Arch. Ration. Mech. Anal. 189:2 (2008), 325–362.
-
(2008)
Arch. Ration. Mech. Anal.
, vol.189
, Issue.2
, pp. 325-362
-
-
Toland, J.F.1
-
28
-
-
84904011362
-
Numerical study of interfacial solitary waves propagating under an elastic sheet
-
[28] Wang, Z., Părău, E.I., Milewski, P.A., Vanden-Broeck, J.-M., Numerical study of interfacial solitary waves propagating under an elastic sheet. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470(2168), 2014, 20140111.
-
(2014)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.470
, Issue.2168
-
-
Wang, Z.1
Părău, E.I.2
Milewski, P.A.3
Vanden-Broeck, J.-M.4
-
29
-
-
84880519771
-
Two-dimensional flexural-gravity waves of finite amplitude in deep water
-
[29] Wang, Z., Vanden-Broeck, J.-M., Milewski, P.A., Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78:4 (2013), 750–761.
-
(2013)
IMA J. Appl. Math.
, vol.78
, Issue.4
, pp. 750-761
-
-
Wang, Z.1
Vanden-Broeck, J.-M.2
Milewski, P.A.3
-
30
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
[30] Wu, S., Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130:1 (1997), 39–72.
-
(1997)
Invent. Math.
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
31
-
-
79952297657
-
Global existence for a translating near-circular Hele–Shaw bubble with surface tension
-
[31] Ye, J., Tanveer, S., Global existence for a translating near-circular Hele–Shaw bubble with surface tension. SIAM J. Math. Anal. 43:1 (2011), 457–506.
-
(2011)
SIAM J. Math. Anal.
, vol.43
, Issue.1
, pp. 457-506
-
-
Ye, J.1
Tanveer, S.2
-
32
-
-
84858827298
-
Global solutions for a two-phase Hele–Shaw bubble for a near-circular initial shape
-
[32] Ye, J., Tanveer, S., Global solutions for a two-phase Hele–Shaw bubble for a near-circular initial shape. Complex Var. Elliptic Equ. 57:1 (2012), 23–61.
-
(2012)
Complex Var. Elliptic Equ.
, vol.57
, Issue.1
, pp. 23-61
-
-
Ye, J.1
Tanveer, S.2
|