메뉴 건너뛰기




Volumn 54, Issue 3, 2017, Pages 283-304

Integrating the multi-label land-use concept and cellular automata with the artificial neural network-based Land Transformation Model: an integrated ML-CA-LTM modeling framework

Author keywords

arti cial neural networks; cellular automata; land use change; mono label class; multi label classes

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CELLULAR AUTOMATON; INTEGRATED APPROACH; LAND USE CHANGE; MACHINE LEARNING; PARAMETERIZATION;

EID: 85008400451     PISSN: 15481603     EISSN: None     Source Type: Journal    
DOI: 10.1080/15481603.2016.1265706     Document Type: Article
Times cited : (76)

References (57)
  • 2
    • 84959508048 scopus 로고    scopus 로고
    • Integrating Cellular Automata, Artificial Neural Network, and Fuzzy Set Theory to Simulate Threatened Orchards: Application to Maragheh, Iran
    • Azari, M., A., Tayyebi, M., Helbich, and M. A., Reveshty. 2016. “Integrating Cellular Automata, Artificial Neural Network, and Fuzzy Set Theory to Simulate Threatened Orchards:Application to Maragheh, Iran.” Giscience & Remote Sensing 53 (2):183–205.
    • (2016) Giscience & Remote Sensing , vol.53 , Issue.2 , pp. 183-205
    • Azari, M.1    Tayyebi, A.2    Helbich, M.3    Reveshty, M.A.4
  • 3
    • 84942553219 scopus 로고    scopus 로고
    • Analysis of Urban Growth and Estimating Population Density Using Satellite Images of Nighttime Lights and Land-Use and Population Data
    • Bagan, H., and Y., Yamagata. 2015. “Analysis of Urban Growth and Estimating Population Density Using Satellite Images of Nighttime Lights and Land-Use and Population Data.” Giscience & Remote Sensing 52 (6):765–780. doi:10.1080/15481603.2015.1072400.
    • (2015) Giscience & Remote Sensing , vol.52 , Issue.6 , pp. 765-780
    • Bagan, H.1    Yamagata, Y.2
  • 4
    • 84903769454 scopus 로고    scopus 로고
    • Land Use Changes Modelling Using Advanced Methods: Cellular Automata and Artificial Neural Networks. the Spatial and Explicit Representation of Land Cover Dynamics at the Cross-Border Region Scale
    • Basse, R. M., H., Omrani, O., Charif, P., Gerber, and K., Bódis. 2014. “Land Use Changes Modelling Using Advanced Methods:Cellular Automata and Artificial Neural Networks. the Spatial and Explicit Representation of Land Cover Dynamics at the Cross-Border Region Scale.” Applied Geography 53:160–171. doi:10.1016/j.apgeog.2014.06.016.
    • (2014) Applied Geography , vol.53 , pp. 160-171
    • Basse, R.M.1    Omrani, H.2    Charif, O.3    Gerber, P.4    Bódis, K.5
  • 5
    • 82555169273 scopus 로고    scopus 로고
    • Modeling and Simulation in Geographic Information Science: Integrated Models and Grand Challenges
    • Batty, M., 2011. “Modeling and Simulation in Geographic Information Science:Integrated Models and Grand Challenges.” Procedia-Social and Behavioral Sciences 21:10–17. doi:10.1016/j.sbspro.2011.07.003.
    • (2011) Procedia-Social and Behavioral Sciences , vol.21 , pp. 10-17
    • Batty, M.1
  • 6
    • 84881372729 scopus 로고    scopus 로고
    • Cellular Automata Simulation of Urban Dynamics through GPGPU
    • Blecic, I., A., Cecchini, and G. A., Trunfio. 2013. “Cellular Automata Simulation of Urban Dynamics through GPGPU.” The Journal of Supercomputing 65 (2):614–629. doi:10.1007/s11227-013-0913-z.
    • (2013) The Journal of Supercomputing , vol.65 , Issue.2 , pp. 614-629
    • Blecic, I.1    Cecchini, A.2    Trunfio, G.A.3
  • 7
    • 3042597440 scopus 로고    scopus 로고
    • Learning Multi-Label Scene Classification
    • Boutell, M. R., J., Luo, X., Shen, and C. M., Brown. 2004. “Learning Multi-Label Scene Classification.” Pattern Recognition 37 (9):1757–1771. doi:10.1016/j.patcog.2004.03.009.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 8
    • 84884708399 scopus 로고    scopus 로고
    • Opportunities to Improve Impact, Integration, and Evaluation of Land Change Models
    • Brown, D. G., P. H., Verburg, R. G., Pontius, and M. D., Lange. 2013. “Opportunities to Improve Impact, Integration, and Evaluation of Land Change Models.” Current Opinion in Environmental Sustainability 5 (5):452–457. doi:10.1016/j.cosust.2013.07.012.
    • (2013) Current Opinion in Environmental Sustainability , vol.5 , Issue.5 , pp. 452-457
    • Brown, D.G.1    Verburg, P.H.2    Pontius, R.G.3    Lange, M.D.4
  • 9
    • 0000750406 scopus 로고    scopus 로고
    • A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area
    • Clarke, K., S., Hoppen, and L., Gaydos. 1997. “A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area.” Environment and Planning B:Planning and Design 24:247–261. doi:10.1068/b240247.
    • (1997) Environment and Planning B: Planning and Design , vol.24 , pp. 247-261
    • Clarke, K.1    Hoppen, S.2    Gaydos, L.3
  • 10
    • 23644433953 scopus 로고    scopus 로고
    • Where Has the Future Gone? Rethinking the Role of Integrated Land-Use Models in Spatial Planning
    • Couclelis, H., 2005. “Where Has the Future Gone? Rethinking the Role of Integrated Land-Use Models in Spatial Planning.” Environment and Planning A 37:1353–1371. doi:10.1068/a3785.
    • (2005) Environment and Planning A , vol.37 , pp. 1353-1371
    • Couclelis, H.1
  • 13
    • 84871934138 scopus 로고    scopus 로고
    • Modeling Urban Evolution Using Neural Networks, Fuzzy Logic and GIS: The Case of the Athens Metropolitan Area
    • Grekousis, G., P., Manetos, and Y. N., Photis. 2013. “Modeling Urban Evolution Using Neural Networks, Fuzzy Logic and GIS:The Case of the Athens Metropolitan Area.” Cities 30:193–203. doi:10.1016/j.cities.2012.03.006.
    • (2013) Cities , vol.30 , pp. 193-203
    • Grekousis, G.1    Manetos, P.2    Photis, Y.N.3
  • 15
    • 29544443445 scopus 로고    scopus 로고
    • Very High Resolution Interpolated Climate Surfaces for Global Land Areas
    • Hijmans, R. J., S. E., Cameron, J. L., Parra, P. G., Jones, and A., Jarvis. 2005. “Very High Resolution Interpolated Climate Surfaces for Global Land Areas.” International Journal of Climatology 25 (15):1965–1978. doi:10.1002/(ISSN)1097-0088.
    • (2005) International Journal of Climatology , vol.25 , Issue.15 , pp. 1965-1978
    • Hijmans, R.J.1    Cameron, S.E.2    Parra, J.L.3    Jones, P.G.4    Jarvis, A.5
  • 16
    • 74349127103 scopus 로고    scopus 로고
    • Support Vector Machines for Urban Growth Modeling
    • Huang, B., C., Xie, and R., Tay. 2010. “Support Vector Machines for Urban Growth Modeling.” Geoinformatica 14:83–99. doi:10.1007/s10707-009-0077-4.
    • (2010) Geoinformatica , vol.14 , pp. 83-99
    • Huang, B.1    Xie, C.2    Tay, R.3
  • 19
    • 0034837081 scopus 로고    scopus 로고
    • Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems
    • Li, X., and A., Yeh. 2001. “Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems.” Environment and Planning A 33:1445–1462. doi:10.1068/a33210.
    • (2001) Environment and Planning A , vol.33 , pp. 1445-1462
    • Li, X.1    Yeh, A.2
  • 20
    • 0036332937 scopus 로고    scopus 로고
    • Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using Gis
    • Li, X., and A., Yeh. 2002. “Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using Gis.” International Journal of Geographical Information Science 16:323–343. doi:10.1080/13658810210137004.
    • (2002) International Journal of Geographical Information Science , vol.16 , pp. 323-343
    • Li, X.1    Yeh, A.2
  • 21
    • 33750948815 scopus 로고    scopus 로고
    • Ordered Weighted Averaging with Fuzzy Quantifiers: GIS-Based Multicriteria Evaluation for Land-Use Suitability Analysis
    • Malczewski, J., 2006. “Ordered Weighted Averaging with Fuzzy Quantifiers:GIS-Based Multicriteria Evaluation for Land-Use Suitability Analysis.” International Journal of Applied Earth Observation and Geoinformation 8 (4):270–277. doi:10.1016/j.jag.2006.01.003.
    • (2006) International Journal of Applied Earth Observation and Geoinformation , vol.8 , Issue.4 , pp. 270-277
    • Malczewski, J.1
  • 24
    • 1642265059 scopus 로고    scopus 로고
    • Modelling Deforestation Using GIS and Artificial Neural Networks
    • Mas, J. F., H., Puig, J. L., Palacio, and A., Sosa-López. 2004. “Modelling Deforestation Using GIS and Artificial Neural Networks.” Environmental Modelling & Software 19:461–471. doi:10.1016/S1364-8152(03)00161-0.
    • (2004) Environmental Modelling & Software , vol.19 , pp. 461-471
    • Mas, J.F.1    Puig, H.2    Palacio, J.L.3    Sosa-López, A.4
  • 25
    • 33750500056 scopus 로고    scopus 로고
    • Land-Use and Land-Cover Change Pathways and Impacts
    • Netherlands: Springer
    • Mustard, J. F., R. S., Defries, T., Fisher, and E., Moran. 2004. “Land-Use and Land-Cover Change Pathways and Impacts.” In Land Change Science, 411–429. Netherlands:Springer.
    • (2004) Land Change Science , pp. 411-429
    • Mustard, J.F.1    Defries, R.S.2    Fisher, T.3    Moran, E.4
  • 26
    • 39849092984 scopus 로고    scopus 로고
    • Integrating Diverse Methods to Understand Climate–Land Interactions in East Africa
    • Olson, J. M., G., Alagarswamy, J. A., Andresen, D. J., Campbell, A. Y., Davis, J., Ge, B. C., Pijanowski, and J., Wang. 2008. “Integrating Diverse Methods to Understand Climate–Land Interactions in East Africa.” Geoforum 39 (2):898–911. doi:10.1016/j.geoforum.2007.03.011.
    • (2008) Geoforum , vol.39 , Issue.2 , pp. 898-911
    • Olson, J.M.1    Alagarswamy, G.2    Andresen, J.A.3    Campbell, D.J.4    Davis, A.Y.5    Ge, J.6    Pijanowski, B.C.7    Wang, J.8
  • 29
    • 85038359716 scopus 로고    scopus 로고
    • Integrating the Multi-Label Land Use Concept and Cellular Automata with the ANN-Based Land Transformation Model
    • Dallas, TX:
    • Omrani, H., A., Tayyebi, and B. C., Pijanowski. 2015b. “Integrating the Multi-Label Land Use Concept and Cellular Automata with the ANN-Based Land Transformation Model.” In Geocomputing Conference, 208–210. Dallas, TX:The University of Texas.
    • (2015) Geocomputing Conference , pp. 208-210
    • Omrani, H.1    Tayyebi, A.2    Pijanowski, B.C.3
  • 30
    • 41249100959 scopus 로고    scopus 로고
    • Using Back-Cast Land-Use Change and Groundwater Travel Time Models to Generate Land-Use Legacy Maps for Watershed Management
    • Pijanowski, B., D. K., Ray, A. D., Kendall, J. M., Duckles, and D. W., Hyndman. 2007. “Using Back-Cast Land-Use Change and Groundwater Travel Time Models to Generate Land-Use Legacy Maps for Watershed Management.” Ecology and Society 12 (2):25. doi:10.5751/ES-02154-120225.
    • (2007) Ecology and Society , vol.12 , Issue.2 , pp. 25
    • Pijanowski, B.1    Ray, D.K.2    Kendall, A.D.3    Duckles, J.M.4    Hyndman, D.W.5
  • 31
    • 84968774983 scopus 로고    scopus 로고
    • Modelling Urbanization Patterns in Two Diverse Regions of the World
    • Pijanowski, B. C., K., Alexandridis, and D., Mueller. 2006. “Modelling Urbanization Patterns in Two Diverse Regions of the World.” Journal of Land Use Science 1 (2–4):83–108. doi:10.1080/17474230601058310.
    • (2006) Journal of Land Use Science , vol.1 , Issue.2-4 , pp. 83-108
    • Pijanowski, B.C.1    Alexandridis, K.2    Mueller, D.3
  • 32
    • 0036837310 scopus 로고    scopus 로고
    • Using Neural Networks and GIS to Forecast Land Use Changes: A Land Trans- Formation Model
    • Pijanowski, B. C., G., Daniel, S., Brown, and A., Manik. 2002a. “Using Neural Networks and GIS to Forecast Land Use Changes:A Land Trans- Formation Model.” Computers, Environment and Urban Systems 26:553–575. doi:10.1016/S0198-9715(01)00015-1.
    • (2002) Computers, Environment and Urban Systems , vol.26 , pp. 553-575
    • Pijanowski, B.C.1    Daniel, G.2    Brown, S.3    Manik, A.4
  • 33
    • 0036766129 scopus 로고    scopus 로고
    • Forecasting and Assessing the Impact of Urban Sprawl in Coastal Watersheds along Eastern Lake Michigan
    • Pijanowski, B. C., B., Shellito, S., Pithadia, and K., Alexandridis. 2002b. “Forecasting and Assessing the Impact of Urban Sprawl in Coastal Watersheds along Eastern Lake Michigan.” Lakes & Reservoirs:Research & Management 7 (3):271–285. doi:10.1046/j.1440-1770.2002.00203.x.
    • (2002) Lakes & Reservoirs: Research & Management , vol.7 , Issue.3 , pp. 271-285
    • Pijanowski, B.C.1    Shellito, B.2    Pithadia, S.3    Alexandridis, K.4
  • 35
    • 84887236259 scopus 로고    scopus 로고
    • A Big Data Urban Growth Simulation at A National Scale: Configuring the GIS and Neural Network Based Land Transformation Model to Run in A High Performance Computing (HPC) Environment
    • Pijanowski, B. C., A., Tayyebi, J., Doucette, B. K., Pekin, D., Braun, and J., Plourde. 2014. “A Big Data Urban Growth Simulation at A National Scale:Configuring the GIS and Neural Network Based Land Transformation Model to Run in A High Performance Computing (HPC) Environment.” Environmental Modelling & Software 51:250–268. doi:10.1016/j.envsoft.2013.09.015.
    • (2014) Environmental Modelling & Software , vol.51 , pp. 250-268
    • Pijanowski, B.C.1    Tayyebi, A.2    Doucette, J.3    Pekin, B.K.4    Braun, D.5    Plourde, J.6
  • 36
    • 0035125969 scopus 로고    scopus 로고
    • Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps
    • Power, C., A., Simms, and R., White. 2001. “Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps.” International Journal of Geographical Information Science 15 (1):77–100. doi:10.1080/136588100750058715.
    • (2001) International Journal of Geographical Information Science , vol.15 , Issue.1 , pp. 77-100
    • Power, C.1    Simms, A.2    White, R.3
  • 37
    • 84856475639 scopus 로고    scopus 로고
    • Coupling Land Use and Groundwater Models to Map Land Use Legacies: Assessment of Model Uncertainties Relevant to Land Use Planning
    • Ray, D. K., B. C., Pijanowski, A. D., Kendall, and D. W., Hyndman. 2012. “Coupling Land Use and Groundwater Models to Map Land Use Legacies:Assessment of Model Uncertainties Relevant to Land Use Planning.” Applied Geography 34:356–370. doi:10.1016/j.apgeog.2012.01.002.
    • (2012) Applied Geography , vol.34 , pp. 356-370
    • Ray, D.K.1    Pijanowski, B.C.2    Kendall, A.D.3    Hyndman, D.W.4
  • 40
    • 55349120848 scopus 로고    scopus 로고
    • Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling
    • Shan, J., S., Alkheder, and J., Wang. 2008. “Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling.” Photogrammetric Engineering & Remote Sensing 74 (10):1267–1277. doi:10.14358/PERS.74.10.1267.
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.74 , Issue.10 , pp. 1267-1277
    • Shan, J.1    Alkheder, S.2    Wang, J.3
  • 42
    • 84885120241 scopus 로고    scopus 로고
    • Hierarchical Modeling of Urban Growth across the Conterminous USA: Developing Meso-Scale Quantity Drivers for the Land Transformation Model
    • Tayyebi, A., B. K., Pekin, B. C., Pijanowski, J. D., Plourde, J. S., Doucette, and D., Braun. 2013. “Hierarchical Modeling of Urban Growth across the Conterminous USA:Developing Meso-Scale Quantity Drivers for the Land Transformation Model.” Journal of Land Use Science 8 (4):422–442. doi:10.1080/1747423X.2012.675364.
    • (2013) Journal of Land Use Science , vol.8 , Issue.4 , pp. 422-442
    • Tayyebi, A.1    Pekin, B.K.2    Pijanowski, B.C.3    Plourde, J.D.4    Doucette, J.S.5    Braun, D.6
  • 43
    • 84894253792 scopus 로고    scopus 로고
    • Predicting the Expansion of an Urban Boundary Using Spatial Logistic Regression and Hybrid Raster–Vector Routines with Remote Sensing and GIS
    • Tayyebi, A., P. C., Perry, and A. H., Tayyebi. 2014a. “Predicting the Expansion of an Urban Boundary Using Spatial Logistic Regression and Hybrid Raster–Vector Routines with Remote Sensing and GIS.” International Journal of Geographical Information Science 28 (4):639–659. doi:10.1080/13658816.2013.845892.
    • (2014) International Journal of Geographical Information Science , vol.28 , Issue.4 , pp. 639-659
    • Tayyebi, A.1    Perry, P.C.2    Tayyebi, A.H.3
  • 44
    • 84897442036 scopus 로고    scopus 로고
    • Modeling Multiple Land Use Changes Using ANN, CART and MARS: Comparing Tradeoffs in Goodness of fit and Explanatory Power of Data Mining Tools
    • Tayyebi, A., and B. C., Pijanowski. 2014. “Modeling Multiple Land Use Changes Using ANN, CART and MARS:Comparing Tradeoffs in Goodness of fit and Explanatory Power of Data Mining Tools.” International Journal of Applied Earth Observation and Geoinformation 28:102–116. doi:10.1016/j.jag.2013.11.008.
    • (2014) International Journal of Applied Earth Observation and Geoinformation , vol.28 , pp. 102-116
    • Tayyebi, A.1    Pijanowski, B.C.2
  • 45
    • 84904599862 scopus 로고    scopus 로고
    • Comparing Three Global Parametric and Local Non-Parametric Models to Simulate Land Use Change in Diverse Areas of the World
    • Tayyebi, A., B. C., Pijanowski, M., Linderman, and C., Gratton. 2014b. “Comparing Three Global Parametric and Local Non-Parametric Models to Simulate Land Use Change in Diverse Areas of the World.” Environmental Modelling & Software 59:202–221. doi:10.1016/j.envsoft.2014.05.022.
    • (2014) Environmental Modelling & Software , vol.59 , pp. 202-221
    • Tayyebi, A.1    Pijanowski, B.C.2    Linderman, M.3    Gratton, C.4
  • 46
    • 38049134453 scopus 로고    scopus 로고
    • The Emergence of Land Change Science for Global Environmental Change and Sustainability
    • Turner, B. L., E. F., Lambin, and A., Reenberg. 2007. “The Emergence of Land Change Science for Global Environmental Change and Sustainability.” Proceedings of the National Academy of Sciences 104 (52):20666–20671. doi:10.1073/pnas.0704119104.
    • (2007) Proceedings of the National Academy of Sciences , vol.104 , Issue.52 , pp. 20666-20671
    • Turner, B.L.1    Lambin, E.F.2    Reenberg, A.3
  • 49
    • 0037233955 scopus 로고    scopus 로고
    • Identifying Relationships between Baseflow Geochemistry and Land Use with Synoptic Sampling and R-Mode Factor Analysis
    • Wayland, K. G., D. T., Long, D. W., Hyndman, B. C., Pijanowski, S. M., Woodhams, and S. K., Haack. 2003. “Identifying Relationships between Baseflow Geochemistry and Land Use with Synoptic Sampling and R-Mode Factor Analysis.” Journal of Environment Quality 32 (1):180–190. doi:10.2134/jeq2003.1800.
    • (2003) Journal of Environment Quality , vol.32 , Issue.1 , pp. 180-190
    • Wayland, K.G.1    Long, D.T.2    Hyndman, D.W.3    Pijanowski, B.C.4    Woodhams, S.M.5    Haack, S.K.6
  • 50
    • 0034284892 scopus 로고    scopus 로고
    • High-Resolution Integrated Modelling of the Spatial Dynamics of Urban and Regional Systems
    • White, R., and G., Engelen. 2000. “High-Resolution Integrated Modelling of the Spatial Dynamics of Urban and Regional Systems.” Computers, Environment and Urban Systems 24:383–400. doi:10.1016/S0198-9715(00)00012-0.
    • (2000) Computers, Environment and Urban Systems , vol.24 , pp. 383-400
    • White, R.1    Engelen, G.2
  • 51
    • 84864698313 scopus 로고    scopus 로고
    • Integrated Modelling of Population, Employment and Land-Use Change with a Multiple Activity-Based Variable Grid Cellular Automaton
    • White, R., I., Uljee, and G., Engelen. 2012. “Integrated Modelling of Population, Employment and Land-Use Change with a Multiple Activity-Based Variable Grid Cellular Automaton.” International Journal of Geographical Information Science 26:1251–1280. doi:10.1080/13658816.2011.635146.
    • (2012) International Journal of Geographical Information Science , vol.26 , pp. 1251-1280
    • White, R.1    Uljee, I.2    Engelen, G.3
  • 52
    • 33747890538 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques
    • Witten, I. H., and E., Frank. 2005. Data Mining:Practical Machine Learning Tools and Techniques, 2nd ed. San Francisco, CA:Morgan Kaufmann.
    • (2005) Morgan Kaufmann
    • Witten, I.H.1    Frank, E.2
  • 55
    • 40949111342 scopus 로고    scopus 로고
    • Cellular Automata for Simulating Land Use Changes Based on Support Vector Machines
    • Yang, Q., X., Li, and X., Shi. 2008. “Cellular Automata for Simulating Land Use Changes Based on Support Vector Machines.” Computers & Geosciences 34:592–602. doi:10.1016/j.cageo.2007.08.003.
    • (2008) Computers & Geosciences , vol.34 , pp. 592-602
    • Yang, Q.1    Li, X.2    Shi, X.3
  • 56
    • 84857365593 scopus 로고    scopus 로고
    • Multi-Label Classification Models for Sustainable flood Retention Basins
    • Yang, Q., J., Shao, M., Scholz, C., Boehm, and C., Plant. 2012. “Multi-Label Classification Models for Sustainable flood Retention Basins.” Environmental Modelling & Software 32:27–36. doi:10.1016/j.envsoft.2012.01.001.
    • (2012) Environmental Modelling & Software , vol.32 , pp. 27-36
    • Yang, Q.1    Shao, J.2    Scholz, M.3    Boehm, C.4    Plant, C.5
  • 57
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization
    • Zhang, M. L., and Z. H., Zhou. 2006. “Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization.” IEEE Transactions on Knowledge and Data Engineering 18 (10):1338–1351. doi:10.1109/TKDE.2006.162.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.