메뉴 건너뛰기




Volumn 29, Issue 6, 2015, Pages 1023-1041

Multi-label class assignment in land-use modelling

Author keywords

geographic information systems; land use modelling; machine learning; multi label

Indexed keywords

AERIAL PHOTOGRAPHY; GIS; LAND USE CHANGE; LEARNING; MODELING;

EID: 84933679301     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2015.1008004     Document Type: Article
Times cited : (28)

References (41)
  • 1
    • 84903769454 scopus 로고    scopus 로고
    • Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale
    • R.M.Basse,, et al., 2014. Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160–171. doi:10.1016/j.apgeog.2014.06.016
    • (2014) Applied Geography , vol.53 , pp. 160-171
    • Basse, R.M.1
  • 2
    • 82555169273 scopus 로고    scopus 로고
    • Modeling and simulation in geographic information science: integrated models and grand challenges
    • M.Batty,, 2011. Modeling and simulation in geographic information science: integrated models and grand challenges. Procedia-Social and Behavioral Sciences, 21, 10–17. doi:10.1016/j.sbspro.2011.07.003
    • (2011) Procedia-Social and Behavioral Sciences , vol.21 , pp. 10-17
    • Batty, M.1
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M.R.Boutell,, et al., 2004. Learning multi-label scene classification. Pattern Recognition, 37, 1757–1771. doi:10.1016/j.patcog.2004.03.009
    • (2004) Pattern Recognition , vol.37 , pp. 1757-1771
    • Boutell, M.R.1
  • 6
    • 23644433953 scopus 로고    scopus 로고
    • Where has the future gone?” Rethinking the role of integrated land-use models in spatial planning
    • H.Couclelis,, 2005. “Where has the future gone?” Rethinking the role of integrated land-use models in spatial planning. Environment and Planning A, 37, 1353–1371. doi:10.1068/a3785
    • (2005) Environment and Planning A , vol.37
    • Couclelis, H.1
  • 7
    • 39049097337 scopus 로고    scopus 로고
    • Transition potential modeling for land-cover change
    • Maguire D., Batty M., Goodchild M., (eds), Redlands, CA: ESRI Press
    • J.R.Eastman,, L.A.Solórzano,, and M.E.V.Fossen,, 2005. Transition potential modeling for land-cover change. In: D.Maguire, M.Batty, and M.Goodchild, eds. GIS, spatial analysis and modeling. Redlands, CA: ESRI Press, 357–385.
    • (2005) GIS, spatial analysis and modeling , pp. 357-385
    • Eastman, J.R.1    Solórzano, L.A.2    Fossen, M.E.V.3
  • 9
    • 33646556408 scopus 로고    scopus 로고
    • Spatial modelling of biodiversity at the community level
    • S.Ferrier, and A.Guisan,, 2006. Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404. doi:10.1111/j.1365-2664.2006.01149.x
    • (2006) Journal of Applied Ecology , vol.43 , pp. 393-404
    • Ferrier, S.1    Guisan, A.2
  • 10
    • 84871934138 scopus 로고    scopus 로고
    • Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area
    • G.Grekousis,, P.Manetos,, and Y.N.Photis,, 2013. Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities, 30, 193–203. doi:10.1016/j.cities.2012.03.006
    • (2013) Cities , vol.30 , pp. 193-203
    • Grekousis, G.1    Manetos, P.2    Photis, Y.N.3
  • 11
    • 29544443445 scopus 로고    scopus 로고
    • Very high resolution interpolated climate surfaces for global land areas
    • R.J.Hijmans,, et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. doi:10.1002/joc.1276
    • (2005) International Journal of Climatology , vol.25 , pp. 1965-1978
    • Hijmans, R.J.1
  • 12
    • 74349127103 scopus 로고    scopus 로고
    • Support vector machines for urban growth modeling
    • B.Huang,, C.Xie,, and R.Tay,, 2010. Support vector machines for urban growth modeling. Geoinformatica, 14, 83–99. doi:10.1007/s10707-009-0077-4
    • (2010) Geoinformatica , vol.14 , pp. 83-99
    • Huang, B.1    Xie, C.2    Tay, R.3
  • 15
    • 0035017181 scopus 로고    scopus 로고
    • A method and application of multi-scale validation in spatial land use models
    • K.Kok,, et al., 2001. A method and application of multi-scale validation in spatial land use models. Agriculture, Ecosystems & Environment, 85, 223–238. doi:10.1016/S0167-8809(01)00186-4
    • (2001) Agriculture, Ecosystems & Environment , vol.85 , pp. 223-238
    • Kok, K.1
  • 17
    • 1642265059 scopus 로고    scopus 로고
    • Modelling deforestation using GIS and artificial neural networks
    • J.F.Mas,, et al., 2004. Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software, 19, 461–471. doi:10.1016/S1364-8152(03)00161-0
    • (2004) Environmental Modelling & Software , vol.19 , pp. 461-471
    • Mas, J.F.1
  • 20
    • 0036837310 scopus 로고    scopus 로고
    • Using neural networks and GIS to forecast land use changes: a land transformation model
    • B.Pijanowski,, et al., 2002. Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26, 553–575. doi:10.1016/S0198-9715(01)00015-1
    • (2002) Computers, Environment and Urban Systems , vol.26 , pp. 553-575
    • Pijanowski, B.1
  • 21
    • 84887236259 scopus 로고    scopus 로고
    • A big data urban growth simulation at a national scale: configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment
    • B.C.Pijanowski,, et al., 2014. A big data urban growth simulation at a national scale: configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environmental Modelling & Software, 51, 250–268. doi:10.1016/j.envsoft.2013.09.015
    • (2014) Environmental Modelling & Software , vol.51 , pp. 250-268
    • Pijanowski, B.C.1
  • 22
    • 30844437069 scopus 로고    scopus 로고
    • A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions
    • R.G.PontiusJr. and M.L.Cheuk,, 2006. A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. International Journal of Geographical Information Science, 20, 1–30. doi:10.1080/13658810500391024
    • (2006) International Journal of Geographical Information Science , vol.20 , pp. 1-30
    • Pontius, R.G.1    Cheuk, M.L.2
  • 23
    • 0343724636 scopus 로고    scopus 로고
    • Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica
    • R.G.PontiusJr., J.D.Cornell,, and C.A.Hall,, 2001. Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agriculture, Ecosystems & Environment, 85, 191–203. doi:10.1016/S0167-8809(01)00183-9
    • (2001) Agriculture, Ecosystems & Environment , vol.85 , pp. 191-203
    • Pontius, R.G.1    Cornell, J.D.2    Hall, C.A.3
  • 24
    • 78649514497 scopus 로고    scopus 로고
    • Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling
    • F.Sangermano,, J.R.Eastman,, and H.Zhu,, 2010. Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling. Transactions in GIS, 14, 569–580. doi:10.1111/j.1467-9671.2010.01226.x
    • (2010) Transactions in GIS , vol.14 , pp. 569-580
    • Sangermano, F.1    Eastman, J.R.2    Zhu, H.3
  • 25
    • 55349142147 scopus 로고    scopus 로고
    • J. Darzentas et al., eds. Proceedings of the artificial intelligence: theories, models and applications, 2–4 October, Syros, Berlin: Springer
    • E.Spyromitros,, G.Tsoumakas,, and I.Vlahavas,, 2008. An empirical study of lazy multilabel classification algorithms. In: J. Darzentas et al., eds. Proceedings of the artificial intelligence: theories, models and applications, 2–4 October, Syros. Berlin: Springer, 401–406.
    • (2008) An empirical study of lazy multilabel classification algorithms , pp. 401-406
    • Spyromitros, E.1    Tsoumakas, G.2    Vlahavas, I.3
  • 26
    • 84885120241 scopus 로고    scopus 로고
    • Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity drivers for the Land Transformation Model
    • A.Tayyebi,, et al., 2013. Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity drivers for the Land Transformation Model. Journal of Land Use Science, 8, 422–442. doi:10.1080/1747423X.2012.675364
    • (2013) Journal of Land Use Science , vol.8 , pp. 422-442
    • Tayyebi, A.1
  • 27
    • 84897442036 scopus 로고    scopus 로고
    • Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools
    • A.Tayyebi, and B.C.Pijanowski,, 2014. Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation, 28, 102–116. doi:10.1016/j.jag.2013.11.008
    • (2014) International Journal of Applied Earth Observation and Geoinformation , vol.28 , pp. 102-116
    • Tayyebi, A.1    Pijanowski, B.C.2
  • 28
    • 84904599862 scopus 로고    scopus 로고
    • Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world
    • A.Tayyebi,, et al., 2014. Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environmental Modelling & Software, 59, 202–221. doi:10.1016/j.envsoft.2014.05.022
    • (2014) Environmental Modelling & Software , vol.59 , pp. 202-221
    • Tayyebi, A.1
  • 29
    • 79751524150 scopus 로고    scopus 로고
    • An urban growth boundary model using neural networks, GIS and radial parameterization: an application to Tehran, Iran
    • A.Tayyebi,, B.C.Pijanowski,, and A.H.Tayyebi,, 2011. An urban growth boundary model using neural networks, GIS and radial parameterization: an application to Tehran, Iran. Landscape and Urban Planning, 100, 35–44. doi:10.1016/j.landurbplan.2010.10.007
    • (2011) Landscape and Urban Planning , vol.100 , pp. 35-44
    • Tayyebi, A.1    Pijanowski, B.C.2    Tayyebi, A.H.3
  • 32
    • 38549099126 scopus 로고    scopus 로고
    • A multi-scale, multi-model approach for analyzing the future dynamics of European land use
    • P.H.Verburg,, B.Eickhout,, and H.Van Meijl,, 2008. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. The Annals of Regional Science, 42, 57–77. doi:10.1007/s00168-007-0136-4
    • (2008) The Annals of Regional Science , vol.42 , pp. 57-77
    • Verburg, P.H.1    Eickhout, B.2    Van Meijl, H.3
  • 33
    • 1242343868 scopus 로고    scopus 로고
    • Determinants of land-use change patterns in the Netherlands
    • P.H.Verburg,, et al., 2004. Determinants of land-use change patterns in the Netherlands. Environment and Planning B, 31, 125–150. doi:10.1068/b307
    • (2004) Environment and Planning B , vol.31 , pp. 125-150
    • Verburg, P.H.1
  • 34
    • 0034284892 scopus 로고    scopus 로고
    • High-resolution integrated modelling of the spatial dynamics of urban and regional systems
    • R.White, and G.Engelen,, 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24, 383–400. doi:10.1016/S0198-9715(00)00012-0
    • (2000) Computers, Environment and Urban Systems , vol.24 , pp. 383-400
    • White, R.1    Engelen, G.2
  • 35
    • 84864698313 scopus 로고    scopus 로고
    • Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton
    • R.White,, I.Uljee,, and G.Engelen,, 2012. Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton. International Journal of Geographical Information Science, 26, 1251–1280. doi:10.1080/13658816.2011.635146
    • (2012) International Journal of Geographical Information Science , vol.26 , pp. 1251-1280
    • White, R.1    Uljee, I.2    Engelen, G.3
  • 36
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X.Wu,, et al., 2008. Top 10 algorithms in data mining. Knowledge and Information Systems, 14, 1–37. doi:10.1007/s10115-007-0114-2
    • (2008) Knowledge and Information Systems , vol.14 , pp. 1-37
    • Wu, X.1
  • 37
    • 40949111342 scopus 로고    scopus 로고
    • Cellular automata for simulating land use changes based on support vector machines
    • Q.Yang,, X.Li,, and X.Shi,, 2008. Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34, 592–602. doi:10.1016/j.cageo.2007.08.003
    • (2008) Computers & Geosciences , vol.34 , pp. 592-602
    • Yang, Q.1    Li, X.2    Shi, X.3
  • 38
    • 84857365593 scopus 로고    scopus 로고
    • Multi-label classification models for sustainable flood retention basins
    • Q.Yang,, et al., 2012. Multi-label classification models for sustainable flood retention basins. Environmental Modelling & Software, 32, 27–36. doi:10.1016/j.envsoft.2012.01.001
    • (2012) Environmental Modelling & Software , vol.32 , pp. 27-36
    • Yang, Q.1
  • 39
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y.Yang,, 1999. An evaluation of statistical approaches to text categorization. Information Retrieval, 1, 69–90. doi:10.1023/A:1009982220290
    • (1999) Information Retrieval , vol.1 , pp. 69-90
    • Yang, Y.1
  • 40
    • 77956201769 scopus 로고    scopus 로고
    • Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining
    • M.L.Zhang, and K.Zhang,, 2010. Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 999–1008.
    • (2010) Multi-label learning by exploiting label dependency , pp. 999-1008
    • Zhang, M.L.1    Zhang, K.2
  • 41
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: a lazy learning approach to multi-label learning
    • M.L.Zhang, and Z.H.Zhou,, 2007. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition, 40, 2038–2048. doi:10.1016/j.patcog.2006.12.019
    • (2007) Pattern Recognition , vol.40 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.