메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 27-36

Multi-label classification models for sustainable flood retention basins

Author keywords

Back propagation for multi label learning; Baden; Classification framework; Flood control; Landscape management; Multi label K nearest neighbor; Multi label support vector machine; Multiple function; Scotland; Water resources

Indexed keywords

BADEN; CLASSIFICATION FRAMEWORK; LANDSCAPE MANAGEMENT; MULTI-LABEL; MULTIPLE FUNCTION; SCOTLAND;

EID: 84857365593     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2012.01.001     Document Type: Article
Times cited : (30)

References (38)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell M.R., Luo J., Shen X., Brown C.M. Learning multi-label scene classification. Pattern Recog. 2004, 37(9):1757-1771.
    • (2004) Pattern Recog. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 2
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Springer, London, UK, I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.)
    • Chen Y.W., Lin C.J. Combining SVMs with various feature selection strategies. Feature Extraction, Foundations and Applications 2006, 315-323. Springer, London, UK. I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.).
    • (2006) Feature Extraction, Foundations and Applications , pp. 315-323
    • Chen, Y.W.1    Lin, C.J.2
  • 4
    • 80052897388 scopus 로고    scopus 로고
    • Department of Environment, Food and Rural Affairs (Defra), The Stationary Office, London, UK, (last accessed 01.12.11.), Defra
    • Defra Flood and Water Management Act 2010, Department of Environment, Food and Rural Affairs (Defra), The Stationary Office, London, UK, (last accessed 01.12.11.). http://www.legislation.gov.uk/ukpga/2010/29/pdfs/ukpga_20100029_en.pdf.
    • (2010) Flood and Water Management Act
  • 5
    • 84455180244 scopus 로고    scopus 로고
    • Department of Environment, Food and Rural Affairs (Defra), The Stationary Office, London, UK, (last accessed 01.12.11.), Defra
    • Defra The Natural Choice: Securing the Value for Nature. Natural Environment White Paper 2011, Department of Environment, Food and Rural Affairs (Defra), The Stationary Office, London, UK, (last accessed 01.12.11.). http://www.official-documents.gov.uk/document/cm80/8082/8082.pdf.
    • (2011) The Natural Choice: Securing the Value for Nature. Natural Environment White Paper
  • 6
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • MIT Press, Cambridge, MA
    • Elisseeff A., Weston J. A kernel method for multi-labelled classification. Advances in Neural Information Processing Systems 2002, vol. 14:681-687. MIT Press, Cambridge, MA.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 7
    • 69249201649 scopus 로고    scopus 로고
    • Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks
    • European Union
    • European Union Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Off. J. European Union (Eur Lex) Ref L 2007, 288:27-34.
    • (2007) Off. J. European Union (Eur Lex) Ref L , vol.288 , pp. 27-34
  • 8
    • 79953112127 scopus 로고    scopus 로고
    • Application of machine learning methods to spatial interpolation of environmental variables
    • Gibert K., Sànchez-Marrè M. Application of machine learning methods to spatial interpolation of environmental variables. Environ. Modell. Softw. 2011, 26(7):983-985.
    • (2011) Environ. Modell. Softw. , vol.26 , Issue.7 , pp. 983-985
    • Gibert, K.1    Sànchez-Marrè, M.2
  • 10
    • 64549150576 scopus 로고    scopus 로고
    • Self-organizing map analysis of planted soil infiltration systems for treatment of log yard runoff
    • Hedmark Å., Zhang L., Scholz M., Aronsson P., Elowson T. Self-organizing map analysis of planted soil infiltration systems for treatment of log yard runoff. For. Sci. 2009, 55(2):183-188.
    • (2009) For. Sci. , vol.55 , Issue.2 , pp. 183-188
    • Hedmark, Å.1    Zhang, L.2    Scholz, M.3    Aronsson, P.4    Elowson, T.5
  • 11
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Springer, Berlin, Germany
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Proceedings of European Conference on Machine Learning (ECML) 1998, vol. 1398 (7):137-142. Springer, Berlin, Germany.
    • (1998) Proceedings of European Conference on Machine Learning (ECML) , vol.1398 , Issue.7 , pp. 137-142
    • Joachims, T.1
  • 12
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • Kohonen T. An introduction to neural computing. Neural Networks 1988, 1(1):3-16.
    • (1988) Neural Networks , vol.1 , Issue.1 , pp. 3-16
    • Kohonen, T.1
  • 13
    • 33646739998 scopus 로고    scopus 로고
    • Toward intelligent music information retrieval
    • Li T., Ogihara M. Toward intelligent music information retrieval. IEEE T. Multimedia 2006, 8(3):564-574.
    • (2006) IEEE T. Multimedia , vol.8 , Issue.3 , pp. 564-574
    • Li, T.1    Ogihara, M.2
  • 15
    • 84855493098 scopus 로고    scopus 로고
    • A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modelling
    • Li J., Heap A.D., Potter A., Daniell J.J. A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modelling. Environ. Modell. Softw. 2011, 26(12):1647-1659.
    • (2011) Environ. Modell. Softw. , vol.26 , Issue.12 , pp. 1647-1659
    • Li, J.1    Heap, A.D.2    Potter, A.3    Daniell, J.J.4
  • 16
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by EM
    • Orlando, Florida, USA
    • McCallum A.K. Multi-label text classification with a mixture model trained by EM. Proceedings of the AAAI' 99 Workshop on Text Learning 1999, 1-7. Orlando, Florida, USA.
    • (1999) Proceedings of the AAAI' 99 Workshop on Text Learning , pp. 1-7
    • McCallum, A.K.1
  • 17
    • 77953618274 scopus 로고    scopus 로고
    • Classification and assessment of water bodies as adaptive structural for flood risk management planning
    • McMinn W.R., Yang Q., Scholz M. Classification and assessment of water bodies as adaptive structural for flood risk management planning. J. Environ. Manage. 2010, 91(9):1855-1863.
    • (2010) J. Environ. Manage. , vol.91 , Issue.9 , pp. 1855-1863
    • McMinn, W.R.1    Yang, Q.2    Scholz, M.3
  • 19
    • 56749117943 scopus 로고    scopus 로고
    • In defence of one-versus-all classification
    • Rifkin R., Klautau A. In defence of one-versus-all classification. J. Mach. Learn. Res. 2004, 5:101-141.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 21
    • 0000417994 scopus 로고
    • Developments in automatic text retrieval
    • Salton G. Developments in automatic text retrieval. Science 1991, 253(5023):974-980.
    • (1991) Science , vol.253 , Issue.5023 , pp. 974-980
    • Salton, G.1
  • 22
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: a boosting-based system for text categorization
    • Schapire R.E., Singer Y. Boostexter: a boosting-based system for text categorization. Mach. Learn. 2000, 39(2/3):135-168.
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 23
    • 55249127095 scopus 로고    scopus 로고
    • Conceptual classification model for sustainable flood retention basins
    • Scholz M., Sadowski A.J. Conceptual classification model for sustainable flood retention basins. J. Environ. Manage. 2009, 90(1):624-633.
    • (2009) J. Environ. Manage. , vol.90 , Issue.1 , pp. 624-633
    • Scholz, M.1    Sadowski, A.J.2
  • 24
    • 78049302020 scopus 로고    scopus 로고
    • Guidance on variables characterizing water bodies including sustainable flood retention basins
    • Scholz M., Yang Q. Guidance on variables characterizing water bodies including sustainable flood retention basins. Landscape Urban Plan. 2010, 98(3-4):190-199.
    • (2010) Landscape Urban Plan. , vol.98 , Issue.3-4 , pp. 190-199
    • Scholz, M.1    Yang, Q.2
  • 25
    • 34249316215 scopus 로고    scopus 로고
    • Classification methodology for sustainable flood retention basins
    • Scholz M. Classification methodology for sustainable flood retention basins. Landscape Urban Plan. 2007, 81(3):246-256.
    • (2007) Landscape Urban Plan. , vol.81 , Issue.3 , pp. 246-256
    • Scholz, M.1
  • 26
    • 34248215288 scopus 로고    scopus 로고
    • Ecological effects of water retention in the River Rhine Valley: a review assisting future retention basin classification
    • Scholz M. Ecological effects of water retention in the River Rhine Valley: a review assisting future retention basin classification. Int. J. Environ. Stud. 2007, 64(2):171-187.
    • (2007) Int. J. Environ. Stud. , vol.64 , Issue.2 , pp. 171-187
    • Scholz, M.1
  • 27
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Comput. Surv. 2002, 34(1):1-47.
    • (2002) ACM Comput. Surv. , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 29
    • 84857358741 scopus 로고    scopus 로고
    • Mixed method approach for efficient component retrieval from a component repository
    • Sudhakaran J.K., Vasantha R. Mixed method approach for efficient component retrieval from a component repository. J. Software Eng. Appl. 2011, 4:442-445.
    • (2011) J. Software Eng. Appl. , vol.4 , pp. 442-445
    • Sudhakaran, J.K.1    Vasantha, R.2
  • 30
    • 79958039843 scopus 로고    scopus 로고
    • Design and performance analysis of data mining techniques based on decision trees and Naive Bayes classifier for employment chance prediction
    • Sudheep E.M., Sumam M.I., Joseph A. Design and performance analysis of data mining techniques based on decision trees and Naive Bayes classifier for employment chance prediction. J. Conver. Info. Tech. 2011, 6(5):89-98.
    • (2011) J. Conver. Info. Tech. , vol.6 , Issue.5 , pp. 89-98
    • Sudheep, E.M.1    Sumam, M.I.2    Joseph, A.3
  • 34
    • 78650582647 scopus 로고    scopus 로고
    • Feature selection methods for characterizing and classifying adaptive sustainable flood retention basins
    • Yang Q., Shao J., Scholz M., Plant C. Feature selection methods for characterizing and classifying adaptive sustainable flood retention basins. Water Res. 2011, 45(3):993-1004.
    • (2011) Water Res. , vol.45 , Issue.3 , pp. 993-1004
    • Yang, Q.1    Shao, J.2    Scholz, M.3    Plant, C.4
  • 35
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • Zhang M.L., Zhou Z.H. Multi-label neural networks with applications to functional genomics and text categorization. IEEE T. Knowl. Data Eng 2006, 18(10):1338-1351.
    • (2006) IEEE T. Knowl. Data Eng , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 36
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: a lazy learning approach to multi-label learning
    • Zhang M.L., Zhou Z.H. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recog. 2007, 40(7):2038-2048.
    • (2007) Pattern Recog. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 37
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y., Burer S., Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 2006, 7:1315-1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 38
    • 72549094674 scopus 로고    scopus 로고
    • Multi label learning for prediction of human protein subcellular localizations
    • Zhu L., Yang J., Shen H.B. Multi label learning for prediction of human protein subcellular localizations. Protein J. 2009, 28(9-10):384-390.
    • (2009) Protein J. , vol.28 , Issue.9-10 , pp. 384-390
    • Zhu, L.1    Yang, J.2    Shen, H.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.