메뉴 건너뛰기




Volumn 127, Issue , 2017, Pages 249-257

Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction

Author keywords

Data streams; Machine learning; Real time query response; Trajectory prediction

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; DATA COMMUNICATION SYSTEMS; LEARNING SYSTEMS; SERVICE VESSELS; TRAJECTORIES;

EID: 85008336840     PISSN: 01641212     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jss.2016.06.016     Document Type: Article
Times cited : (66)

References (30)
  • 2
    • 84948134477 scopus 로고    scopus 로고
    • A random sampling technique for training support vector machines
    • Balcázar, J., Dai, Y., Watanabe, O., A random sampling technique for training support vector machines. Algorithmic Learning Theory, 2001, 119–134.
    • (2001) Algorithmic Learning Theory , pp. 119-134
    • Balcázar, J.1    Dai, Y.2    Watanabe, O.3
  • 5
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang, F., Chang, L.-C., Huang, H.-L., Real-time recurrent learning neural network for stream-flow forecasting. Hydrol. Process. 16:13 (2002), 2577–2588.
    • (2002) Hydrol. Process. , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.1    Chang, L.-C.2    Huang, H.-L.3
  • 6
    • 84865266807 scopus 로고    scopus 로고
    • Machine learning for vessel trajectories using compression, alignments and domainknowledge
    • de Vries, G.K.D., van Someren, M., Machine learning for vessel trajectories using compression, alignments and domainknowledge. Expert. Syst. Appl., 2012.
    • (2012) Expert. Syst. Appl.
    • de Vries, G.K.D.1    van Someren, M.2
  • 7
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data stream
    • 2003
    • Domingos, P., Hulten, G., A general framework for mining massive data stream. J. Comput. Graph. Stat., 12, 2003 2003.
    • (2003) J. Comput. Graph. Stat. , vol.12
    • Domingos, P.1    Hulten, G.2
  • 8
    • 0742290040 scopus 로고    scopus 로고
    • Tracking a maneuvering target using neural fuzzy network
    • Duh, F.-B., Lin, C.-T., Tracking a maneuvering target using neural fuzzy network. IEEE Trans Syst Man Cybern B Cybern 34:1 (Feb. 2004), 16–33.
    • (2004) IEEE Trans Syst Man Cybern B Cybern , vol.34 , Issue.1 , pp. 16-33
    • Duh, F.-B.1    Lin, C.-T.2
  • 9
    • 85020715458 scopus 로고    scopus 로고
    • Knowledge Discovery from Data Streams
    • Chapman & Hall/CRC
    • Gama, J., Knowledge Discovery from Data Streams. 2010, Chapman & Hall/CRC.
    • (2010)
    • Gama, J.1
  • 11
    • 0003585297 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques, Third Edition
    • third ed. Morgan Kaufmann Burlington, MA
    • Han, J., Kamber, M., Pei, J., Data Mining: Concepts and Techniques, Third Edition. third ed., 2011, Morgan Kaufmann, Burlington, MA.
    • (2011)
    • Han, J.1    Kamber, M.2    Pei, J.3
  • 12
    • 85014623483 scopus 로고    scopus 로고
    • “Mining stream, time-series, and sequence data,” in Data Mining: Concepts and Techniques, second ed., Morgan Kaufmann Publishers Inc.
    • Han, J., Micheline, K., “Mining stream, time-series, and sequence data,” in Data Mining: Concepts and Techniques, second ed., Morgan Kaufmann Publishers Inc.
    • Han, J.1    Micheline, K.2
  • 15
    • 0000558462 scopus 로고    scopus 로고
    • ARMA models and the Box–Jenkins methodology
    • May
    • Makridakis, S., Hibon, M., ARMA models and the Box–Jenkins methodology. J. Forecast. 16:3 (May 1997), 147–163.
    • (1997) J. Forecast. , vol.16 , Issue.3 , pp. 147-163
    • Makridakis, S.1    Hibon, M.2
  • 18
    • 3242781655 scopus 로고    scopus 로고
    • Forecasting the Suez Canal traffic: a neural network analysis
    • Mostafa, M.M., Forecasting the Suez Canal traffic: a neural network analysis. Maritime Policy Manage, 31(2), Apr. 2004.
    • (2004) Maritime Policy Manage , vol.31 , Issue.2
    • Mostafa, M.M.1
  • 19
    • 85014585253 scopus 로고
    • Response times: the three important limits, vol. 5. ch
    • Nielsen, J., Response times: the three important limits, vol. 5. ch, 1994.
    • (1994)
    • Nielsen, J.1
  • 21
    • 84992058639 scopus 로고    scopus 로고
    • Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction
    • Perera, L.P., Oliveira, P., Guedes Soares, C., Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Trans. Intell. Transp. Syst. 13:3 (Sep. 2012), 1188–1200.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.3 , pp. 1188-1200
    • Perera, L.P.1    Oliveira, P.2    Guedes Soares, C.3
  • 22
    • 0004163680 scopus 로고    scopus 로고
    • Kalman Filtering Techniques for Radar Tracking
    • CRC Press
    • Ramachandra, K.V., Kalman Filtering Techniques for Radar Tracking. 2000, CRC Press.
    • (2000)
    • Ramachandra, K.V.1
  • 27
    • 84925860453 scopus 로고    scopus 로고
    • Improving maritime awareness with semantic genetic programming and linear scaling: prediction of vessels position based on AIS Data
    • A.M. Mora G. Squillero Springer International Publishing
    • Vanneschi, L., Castelli, M., Costa, E., Re, A., Vaz, H., Lobo, V., Urbano, P., Improving maritime awareness with semantic genetic programming and linear scaling: prediction of vessels position based on AIS Data. Mora, A.M., Squillero, G., (eds.) Applications of Evolutionary Computation, 2015, Springer International Publishing, 732–744.
    • (2015) Applications of Evolutionary Computation , pp. 732-744
    • Vanneschi, L.1    Castelli, M.2    Costa, E.3    Re, A.4    Vaz, H.5    Lobo, V.6    Urbano, P.7
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.