-
1
-
-
11644298091
-
Mechanisms for lithium insertion in carbonaceous materials
-
1 Dahn, J.R., Zheng, T., Liu, Y.H., Xue, J.S., Mechanisms for lithium insertion in carbonaceous materials. Science 270 (1995), 590–593.
-
(1995)
Science
, vol.270
, pp. 590-593
-
-
Dahn, J.R.1
Zheng, T.2
Liu, Y.H.3
Xue, J.S.4
-
2
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires
-
2 Chan, C.K., Peng, H.L., Liu, G., Mcilwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3 (2008), 31–35.
-
(2008)
Nat. Nanotech.
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
Peng, H.L.2
Liu, G.3
Mcilwrath, K.4
Zhang, X.F.5
Huggins, R.A.6
Cui, Y.7
-
3
-
-
84905817375
-
Interconnected hollow carbon nanospheres for stable lithium metal anodes
-
3 Zheng, G.Y., Lee, S.W., Liang, Z., Lee, H.-W., Yan, K., Yao, H.B., Wang, H.T., Li, W.Y., Chu, S., Cui, Y., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9 (2014), 618–623.
-
(2014)
Nat. Nanotech.
, vol.9
, pp. 618-623
-
-
Zheng, G.Y.1
Lee, S.W.2
Liang, Z.3
Lee, H.-W.4
Yan, K.5
Yao, H.B.6
Wang, H.T.7
Li, W.Y.8
Chu, S.9
Cui, Y.10
-
4
-
-
0001658455
-
Electrical energy storage and intercalation chemistry
-
4 Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science 192 (1976), 1126–1127.
-
(1976)
Science
, vol.192
, pp. 1126-1127
-
-
Whittingham, M.S.1
-
5
-
-
84921351252
-
Chalcogenide Battery. US patent 4009052
-
February
-
5 Whittingham, M.S., Chalcogenide Battery. US patent 4009052. February 1977.
-
(1977)
-
-
Whittingham, M.S.1
-
6
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
6 Tarascon, J.-M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414 (2001), 359–367.
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.-M.1
Armand, M.2
-
7
-
-
83655183076
-
Li-O2 and Li-S batteries with high energy storage
-
7 Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11 (2012), 19–29.
-
(2012)
Nat. Mater.
, vol.11
, pp. 19-29
-
-
Bruce, P.G.1
Freunberger, S.A.2
Hardwick, L.J.3
Tarascon, J.-M.4
-
8
-
-
84893029597
-
Lithium metal anodes for rechargeable batteries
-
8 Xu, W., Wang, J.L., Ding, F., Chen, X.L., Nasybulin, E., Zhang, Y.H., Zhang, J.G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7 (2014), 513–537.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 513-537
-
-
Xu, W.1
Wang, J.L.2
Ding, F.3
Chen, X.L.4
Nasybulin, E.5
Zhang, Y.H.6
Zhang, J.G.7
-
9
-
-
84887159109
-
Metallic anodes for next generation secondary batteries
-
9 Kim, H., Jeong, G., Kim, Y.-U., Kim, J.-H., Park, C.-M., Sohn, H.-J., Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42 (2013), 9011–9034.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 9011-9034
-
-
Kim, H.1
Jeong, G.2
Kim, Y.-U.3
Kim, J.-H.4
Park, C.-M.5
Sohn, H.-J.6
-
10
-
-
0023012785
-
Inductive impedance of a spirally wound Li/MoS2 cell
-
10 Laman, F.C., Matsen, M.W., Stiles, J.A.R., Inductive impedance of a spirally wound Li/MoS2 cell. J. Electrochem. Soc. 133 (1986), 2441–2446.
-
(1986)
J. Electrochem. Soc.
, vol.133
, pp. 2441-2446
-
-
Laman, F.C.1
Matsen, M.W.2
Stiles, J.A.R.3
-
12
-
-
73249151335
-
Lithium batteries: status, prospects and future
-
12 Scrosati, B., Garche, J., Lithium batteries: status, prospects and future. J. Power Sources 195 (2010), 2419–2430.
-
(2010)
J. Power Sources
, vol.195
, pp. 2419-2430
-
-
Scrosati, B.1
Garche, J.2
-
13
-
-
84922434502
-
Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes
-
13 Lv, D.P., Shao, Y.Y., Lozano, T., Bennett, W.D., Graff, G.L., Polzin, B., Zhang, J.G., Engelhard, M.H., Saenz, N.T., Henderson, W.A., et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater., 5, 2014, 1400993.
-
(2014)
Adv. Energy Mater.
, vol.5
, pp. 1400993
-
-
Lv, D.P.1
Shao, Y.Y.2
Lozano, T.3
Bennett, W.D.4
Graff, G.L.5
Polzin, B.6
Zhang, J.G.7
Engelhard, M.H.8
Saenz, N.T.9
Henderson, W.A.10
-
14
-
-
38949102073
-
Building better batteries
-
14 Armand, M., Tarascon, J.-M., Building better batteries. Nature 451 (2008), 652–657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.-M.2
-
15
-
-
84890572462
-
Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
-
15 Harry, K.J., Hallinan, D.T., Parkinson, D.Y., MacDowell, A.A., Balsara, N.P., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13 (2014), 69–73.
-
(2014)
Nat. Mater.
, vol.13
, pp. 69-73
-
-
Harry, K.J.1
Hallinan, D.T.2
Parkinson, D.Y.3
MacDowell, A.A.4
Balsara, N.P.5
-
16
-
-
84858796175
-
7Li MRI of Li batteries reveals location of microstructural lithium
-
16 Chandrashekar, S., Trease, N.M., Chang, H.J., Du, L.-S., Grey, C.P., Jerschow, A., 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11 (2012), 311–315.
-
(2012)
Nat. Mater.
, vol.11
, pp. 311-315
-
-
Chandrashekar, S.1
Trease, N.M.2
Chang, H.J.3
Du, L.-S.4
Grey, C.P.5
Jerschow, A.6
-
17
-
-
77958036913
-
In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
-
17 Bhattacharyya, R., Key, B., Chen, H.L., Best, A.S., Hollenkamp, A.F., Grey, C.P., In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9 (2010), 504–510.
-
(2010)
Nat. Mater.
, vol.9
, pp. 504-510
-
-
Bhattacharyya, R.1
Key, B.2
Chen, H.L.3
Best, A.S.4
Hollenkamp, A.F.5
Grey, C.P.6
-
18
-
-
33749508278
-
Lithium metal stripping/plating mechanisms studies: a metallurgical approach
-
18 Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B., Tarascon, J.-M., Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8 (2006), 1639–1649.
-
(2006)
Electrochem. Commun.
, vol.8
, pp. 1639-1649
-
-
Gireaud, L.1
Grugeon, S.2
Laruelle, S.3
Yrieix, B.4
Tarascon, J.-M.5
-
19
-
-
0030285345
-
The application of atomic force microscopy for the study of Li deposition processes
-
19 Aurbach, D., Cohen, Y., The application of atomic force microscopy for the study of Li deposition processes. J. Electrochem. Soc. 143 (1996), 3525–3532.
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 3525-3532
-
-
Aurbach, D.1
Cohen, Y.2
-
20
-
-
0032202686
-
In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries
-
20 Orsini, F., Pasquier, A.D., Beaudoin, B., Tarascon, J.-M., Trentin, M., Langenhuizen, N., Beer, E.D., Notten, P., In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J. Power Sources 76 (1998), 19–29.
-
(1998)
J. Power Sources
, vol.76
, pp. 19-29
-
-
Orsini, F.1
Pasquier, A.D.2
Beaudoin, B.3
Tarascon, J.-M.4
Trentin, M.5
Langenhuizen, N.6
Beer, E.D.7
Notten, P.8
-
21
-
-
0028494676
-
Effect of additives on lithium cycling efficiency
-
21 Hirai, T., Yoshimatsu, I., Yamaki, J.-I., Effect of additives on lithium cycling efficiency. J. Electrochem. Soc. 141 (1994), 2300–2305.
-
(1994)
J. Electrochem. Soc.
, vol.141
, pp. 2300-2305
-
-
Hirai, T.1
Yoshimatsu, I.2
Yamaki, J.-I.3
-
22
-
-
84875415014
-
Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
-
22 Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X.L., Shao, Y.Y., Engelhard, M.H., Nie, Z.M., Xiao, J., et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135 (2013), 4450–4456.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4450-4456
-
-
Ding, F.1
Xu, W.2
Graff, G.L.3
Zhang, J.4
Sushko, M.L.5
Chen, X.L.6
Shao, Y.Y.7
Engelhard, M.H.8
Nie, Z.M.9
Xiao, J.10
-
23
-
-
34547195193
-
Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery
-
23 Lee, Y.M., Seo, J.E., Lee, Y.-G., Lee, S.H., Cho, K.Y., Park, J.-K., Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem. Solid State Lett. 10 (2007), A216–A219.
-
(2007)
Electrochem. Solid State Lett.
, vol.10
, pp. A216-A219
-
-
Lee, Y.M.1
Seo, J.E.2
Lee, Y.-G.3
Lee, S.H.4
Cho, K.Y.5
Park, J.-K.6
-
24
-
-
0032682265
-
Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles
-
24 Shiraishi, S., Kanamura, K., Takehara, Z.-I., Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles. J. Electrochem. Soc. 146 (1999), 1633–1639.
-
(1999)
J. Electrochem. Soc.
, vol.146
, pp. 1633-1639
-
-
Shiraishi, S.1
Kanamura, K.2
Takehara, Z.-I.3
-
25
-
-
52649141034
-
Effect of electrolyte composition on lithium dendrite growth
-
25 Crowther, O., West, A.C., Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155 (2008), A806–A811.
-
(2008)
J. Electrochem. Soc.
, vol.155
, pp. A806-A811
-
-
Crowther, O.1
West, A.C.2
-
26
-
-
0346334088
-
Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
-
26 Ota, H., Shima, K., Ue, M., Yamaki, J.-i, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49 (2004), 565–572.
-
(2004)
Electrochim. Acta
, vol.49
, pp. 565-572
-
-
Ota, H.1
Shima, K.2
Ue, M.3
Yamaki, J.-I.4
-
27
-
-
84906552763
-
Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
-
27 Miao, R.R., Yang, J., Feng, X.J., Jia, H., Wang, J.L., Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271 (2014), 291–297.
-
(2014)
J. Power Sources
, vol.271
, pp. 291-297
-
-
Miao, R.R.1
Yang, J.2
Feng, X.J.3
Jia, H.4
Wang, J.L.5
Nuli, Y.6
-
28
-
-
84916620106
-
Dendrite-free lithium deposition with self-aligned nanorod structure
-
28 Zhang, Y.H., Qian, J.F., Xu, W., Russell, S.M., Chen, X.L., Nasybulin, E., Bhattacharya, P., Engelhard, M.H., Mei, D.H., Cao, R.G., et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14 (2014), 6889–6896.
-
(2014)
Nano Lett.
, vol.14
, pp. 6889-6896
-
-
Zhang, Y.H.1
Qian, J.F.2
Xu, W.3
Russell, S.M.4
Chen, X.L.5
Nasybulin, E.6
Bhattacharya, P.7
Engelhard, M.H.8
Mei, D.H.9
Cao, R.G.10
-
29
-
-
84923365387
-
High rate and stable cycling of lithium metal anode
-
29 Qian, J.F., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nat. Commun., 6, 2015, 6362.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6362
-
-
Qian, J.F.1
Henderson, W.A.2
Xu, W.3
Bhattacharya, P.4
Engelhard, M.5
Borodin, O.6
Zhang, J.-G.7
-
30
-
-
84935832834
-
The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
-
30 Li, W.Y., Yao, H.B., Yan, K., Zheng, G.Y., Liang, Z., Chiang, Y.-M., Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun., 6, 2015, 7436.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7436
-
-
Li, W.Y.1
Yao, H.B.2
Yan, K.3
Zheng, G.Y.4
Liang, Z.5
Chiang, Y.-M.6
Cui, Y.7
-
31
-
-
0032581661
-
Nanocomposite polymer electrolytes for lithium batteries
-
31 Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries. Nature 394 (1998), 456–458.
-
(1998)
Nature
, vol.394
, pp. 456-458
-
-
Croce, F.1
Appetecchi, G.B.2
Persi, L.3
Scrosati, B.4
-
32
-
-
80052054095
-
A lithium superionic conductor
-
32 Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A., A lithium superionic conductor. Nat. Mater. 10 (2011), 682–686.
-
(2011)
Nat. Mater.
, vol.10
, pp. 682-686
-
-
Kamaya, N.1
Homma, K.2
Yamakawa, Y.3
Hirayama, M.4
Kanno, R.5
Yonemura, M.6
Kamiyama, T.7
Kato, Y.8
Hama, S.9
Kawamoto, K.10
Mitsui, A.11
-
33
-
-
84876684025
-
Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
-
33 Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J.-P., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12 (2013), 452–457.
-
(2013)
Nat. Mater.
, vol.12
, pp. 452-457
-
-
Bouchet, R.1
Maria, S.2
Meziane, R.3
Aboulaich, A.4
Lienafa, L.5
Bonnet, J.-P.6
Phan, T.N.T.7
Bertin, D.8
Gigmes, D.9
Devaux, D.10
-
34
-
-
84907861729
-
Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode
-
34 Yan, K., Lee, H.-W., Gao, T., Zheng, G.Y., Yao, H.B., Wang, H.T., Lu, Z.D., Zhou, Y., Liang, Z., Liu, Z.F., et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14 (2014), 6016–6022.
-
(2014)
Nano Lett.
, vol.14
, pp. 6016-6022
-
-
Yan, K.1
Lee, H.-W.2
Gao, T.3
Zheng, G.Y.4
Yao, H.B.5
Wang, H.T.6
Lu, Z.D.7
Zhou, Y.8
Liang, Z.9
Liu, Z.F.10
-
35
-
-
84929160568
-
Polymer nanofiber-guided uniform lithium deposition for battery electrodes
-
35 Liang, Z., Zheng, G.Y., Liu, C., Liu, N., Li, W.Y., Yan, K., Yao, H.B., Hsu, P.-C., Chu, S., Cui, Y., Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15 (2015), 12910–12916.
-
(2015)
Nano Lett.
, vol.15
, pp. 12910-12916
-
-
Liang, Z.1
Zheng, G.Y.2
Liu, C.3
Liu, N.4
Li, W.Y.5
Yan, K.6
Yao, H.B.7
Hsu, P.-C.8
Chu, S.9
Cui, Y.10
-
36
-
-
84935017261
-
Next-generation lithium metal anode engineering via atomic layer deposition
-
36 Kozen, A.C., Lin, C.-F., Pearse, A.J., Schroeder, M.A., Han, X.G., Hu, L.B., Lee, S.-B., Rubloff, G.W., Noked, M., Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9 (2015), 5884–5892.
-
(2015)
ACS Nano
, vol.9
, pp. 5884-5892
-
-
Kozen, A.C.1
Lin, C.-F.2
Pearse, A.J.3
Schroeder, M.A.4
Han, X.G.5
Hu, L.B.6
Lee, S.-B.7
Rubloff, G.W.8
Noked, M.9
-
37
-
-
84959491224
-
An artificial solid electrolyte interphase layer for stable lithium metal anodes
-
37 Li, N.-W., Yin, Y.-X., Yang, C.-P., Guo, Y.-G., An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 9 (2015), 1853–1858.
-
(2015)
Adv. Mater.
, vol.9
, pp. 1853-1858
-
-
Li, N.-W.1
Yin, Y.-X.2
Yang, C.-P.3
Guo, Y.-G.4
-
38
-
-
84960278383
-
Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth
-
38 Zhang, R., Cheng, X.-B., Zhao, C.-Z., Peng, H.-J., Shi, J.-L., Huang, J.-Q., Wang, J.F., Wei, F., Zhang, Q., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28 (2016), 2155–2162.
-
(2016)
Adv. Mater.
, vol.28
, pp. 2155-2162
-
-
Zhang, R.1
Cheng, X.-B.2
Zhao, C.-Z.3
Peng, H.-J.4
Shi, J.-L.5
Huang, J.-Q.6
Wang, J.F.7
Wei, F.8
Zhang, Q.9
-
39
-
-
84962592426
-
Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
-
39 Liang, Z., Lin, D., Zhao, J., Lu, Z., Liu, Y., Liu, C., Lu, Y., Wang, H., Yan, K., Tao, X., Cui, Y., Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 113 (2016), 2862–2867.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. 2862-2867
-
-
Liang, Z.1
Lin, D.2
Zhao, J.3
Lu, Z.4
Liu, Y.5
Liu, C.6
Lu, Y.7
Wang, H.8
Yan, K.9
Tao, X.10
Cui, Y.11
-
40
-
-
84961644804
-
Lithium-coated polymetric matrix as a minimum-volume-change and dendrite-free lithium metal anode
-
40 Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K., Cui, Y., Lithium-coated polymetric matrix as a minimum-volume-change and dendrite-free lithium metal anode. Nat. Commun., 7, 2016, 10992.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10992
-
-
Liu, Y.1
Lin, D.2
Liang, Z.3
Zhao, J.4
Yan, K.5
Cui, Y.6
-
41
-
-
84961390156
-
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anode
-
41 Lin, D., Liu, Y., Liang, Z., Lee, H.-W., Sun, J., Wang, H., Yan, K., Xie, J., Cui, Y., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anode. Nat. Nanotech. 11 (2016), 626–632.
-
(2016)
Nat. Nanotech.
, vol.11
, pp. 626-632
-
-
Lin, D.1
Liu, Y.2
Liang, Z.3
Lee, H.-W.4
Sun, J.5
Wang, H.6
Yan, K.7
Xie, J.8
Cui, Y.9
-
42
-
-
84857914914
-
Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
-
42 Ji, X., Liu, D.-Y., Prendiville, D.G., Zhang, Y., Liu, X., Stucky, G.D., Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7 (2012), 10–20.
-
(2012)
Nano Today
, vol.7
, pp. 10-20
-
-
Ji, X.1
Liu, D.-Y.2
Prendiville, D.G.3
Zhang, Y.4
Liu, X.5
Stucky, G.D.6
-
43
-
-
0034207099
-
Effect of graphite particle size on irreversible capacity loss
-
43 Karim, Z., Gabrielle, N., Kimio, K., Effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147 (2000), 2110–2115.
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 2110-2115
-
-
Karim, Z.1
Gabrielle, N.2
Kimio, K.3
-
44
-
-
14644406826
-
Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites
-
44 Banks, C.E., Davies, T.J., Wildgoose, G.G., Compton, R.G., Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun., 2005, 829–841.
-
(2005)
Chem. Commun.
, pp. 829-841
-
-
Banks, C.E.1
Davies, T.J.2
Wildgoose, G.G.3
Compton, R.G.4
-
45
-
-
84922165183
-
Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane
-
45 Shen, A., Zou, Y., Wang, Q., Dryfe, R.A.W., Huang, X., Dou, S., Dai, L., Wang, S., Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew. Chem. 126 (2014), 10980–10984.
-
(2014)
Angew. Chem.
, vol.126
, pp. 10980-10984
-
-
Shen, A.1
Zou, Y.2
Wang, Q.3
Dryfe, R.A.W.4
Huang, X.5
Dou, S.6
Dai, L.7
Wang, S.8
-
46
-
-
0040730555
-
Physical chemistry and mechanism of intercalation in graphite
-
46 Hooley, J.G., Physical chemistry and mechanism of intercalation in graphite. Mater. Sci. Eng. 31 (1977), 17–24.
-
(1977)
Mater. Sci. Eng.
, vol.31
, pp. 17-24
-
-
Hooley, J.G.1
-
47
-
-
0000672064
-
The effect of flake thickness on the intercalation of graphite
-
47 Hooley, J.G., The effect of flake thickness on the intercalation of graphite. Carbon 10 (1992), 155–163.
-
(1992)
Carbon
, vol.10
, pp. 155-163
-
-
Hooley, J.G.1
-
48
-
-
0032633740
-
Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation
-
48 Funabiki, A., Inaba, M., Abe, T., Ogumi, Z., Stage transformation of lithium-graphite intercalation compounds caused by electrochemical lithium intercalation. J. Electrochem. Soc. 146 (1999), 2443–2448.
-
(1999)
J. Electrochem. Soc.
, vol.146
, pp. 2443-2448
-
-
Funabiki, A.1
Inaba, M.2
Abe, T.3
Ogumi, Z.4
-
49
-
-
0030642811
-
The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling
-
49 Levi, M.D., Aurbach, D., The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J. Electroanal. Chem. 421 (1997), 79–88.
-
(1997)
J. Electroanal. Chem.
, vol.421
, pp. 79-88
-
-
Levi, M.D.1
Aurbach, D.2
-
50
-
-
0000846309
-
Phase diagram of LixC6
-
50 Dahn, J.R., Phase diagram of LixC6. Phys. Rev. B 44 (1991), 9170–9177.
-
(1991)
Phys. Rev. B
, vol.44
, pp. 9170-9177
-
-
Dahn, J.R.1
-
51
-
-
1842478862
-
Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes: I. Surface morphology and lithium cycling efficiency
-
51 Ota, H., Sakata, Y., Wang, X., Sasahara, J., Yasukawa, E., Characterization of lithium electrode in lithium imides/ethylene carbonate, and cyclic ether electrolytes: I. Surface morphology and lithium cycling efficiency. J. Electrochem. Soc. 151 (2004), A427–A436.
-
(2004)
J. Electrochem. Soc.
, vol.151
, pp. A427-A436
-
-
Ota, H.1
Sakata, Y.2
Wang, X.3
Sasahara, J.4
Yasukawa, E.5
-
52
-
-
84941136589
-
A thermally conductive separator for stable Li metal anodes
-
52 Luo, W., Zhou, L., Fu, K., Yang, Z., Wan, J., Manno, M., Yao, Y., Zhu, H., Yang, B., Hu, L., A thermally conductive separator for stable Li metal anodes. Nano Lett. 15 (2015), 6149–6154.
-
(2015)
Nano Lett.
, vol.15
, pp. 6149-6154
-
-
Luo, W.1
Zhou, L.2
Fu, K.3
Yang, Z.4
Wan, J.5
Manno, M.6
Yao, Y.7
Zhu, H.8
Yang, B.9
Hu, L.10
|