-
1
-
-
34047218906
-
Scalable non-linear support vector machine using hierarchical clustering
-
S. Asharaf and M. N. Murty, “Scalable non-linear support vector machine using hierarchical clustering,” in Proc. Int. Conf. Pattern Recog., 2006, vol. 1, pp. 908–911.
-
(2006)
Proc. Int. Conf. Pattern Recog.
, vol.1
, pp. 908-911
-
-
Asharaf, S.1
Murty, M.N.2
-
2
-
-
34547995832
-
Multiclass core vector machine
-
S. Asharaf, M. N. Murty, and S. K. Shevade, “Multiclass core vector machine,” in Proc. ICML, 2007, pp. 41–48.
-
(2007)
Proc. ICML
, pp. 41-48
-
-
Asharaf, S.1
Murty, M.N.2
Shevade, S.K.3
-
3
-
-
2942555397
-
Training support vector machines using adaptive clustering
-
D. Boley and D. Cao, “Training support vector machines using adaptive clustering,” in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 126–137.
-
(2004)
Proc. SIAM Int. Conf. Data Mining
, pp. 126-137
-
-
Boley, D.1
Cao, D.2
-
4
-
-
0002400882
-
Simplified support vector decision rules
-
C. J. C. Burges, “Simplified support vector decision rules,” in Proc. Int. Conf. Mach. Learn., 1996, pp. 71–77.
-
(1996)
Proc. Int. Conf. Mach. Learn.
, pp. 71-77
-
-
Burges, C.J.C.1
-
6
-
-
33746869623
-
Parallel sequential minimal optimization for the training of support vector machines
-
Jul.
-
L. Cao, S. Keerthi, C.-J. Ong, J. Zhang, U. Periyathamby, X.-J. Fu, and H. Lee, “Parallel sequential minimal optimization for the training of support vector machines,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1039–1049, Jul. 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 1039-1049
-
-
Cao, L.1
Keerthi, S.2
Ong, C.-J.3
Zhang, J.4
Periyathamby, U.5
Fu, X.-J.6
Lee, H.7
-
9
-
-
0038605699
-
Scaling large learning problems with hard parallel mixtures
-
R. Collobert, Y. Bengio, and S. Bengio, “Scaling large learning problems with hard parallel mixtures,” Int. J. Pattern Recogn. Artif. Intell., vol. 17, no. 3, pp. 349–365, 2003.
-
(2003)
Int. J. Pattern Recogn. Artif. Intell.
, vol.17
, Issue.3
, pp. 349-365
-
-
Collobert, R.1
Bengio, Y.2
Bengio, S.3
-
10
-
-
0004116989
-
-
2nd ed. Cambridge, MA: MIT Press
-
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.
-
(2001)
Introduction to Algorithms
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
Stein, C.4
-
11
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Oct.
-
T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms,” Neural Comput., vol. 10, no. 7, pp. 1895–1924, Oct. 1998.
-
(1998)
Neural Comput.
, vol.10
, Issue.7
, pp. 1895-1924
-
-
Dietterich, T.G.1
-
12
-
-
0037929448
-
A fast SVM training algorithm
-
J. X. Dong and A. Krzyzak, “A fast SVM training algorithm,” Int. J. Pattern Recogn. Artif. Intell., vol. 17, no. 3, pp. 367–384, 2003.
-
(2003)
Int. J. Pattern Recogn. Artif. Intell.
, vol.17
, Issue.3
, pp. 367-384
-
-
Dong, J.X.1
Krzyzak, A.2
-
13
-
-
0002327647
-
Squashing flat files flatter
-
W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon, “Squashing flat files flatter,” in Proc. Knowl. Discov. Data Mining, 1999, pp. 6–15.
-
(1999)
Proc. Knowl. Discov. Data Mining
, pp. 6-15
-
-
DuMouchel, W.1
Volinsky, C.2
Johnson, T.3
Cortes, C.4
Pregibon, D.5
-
14
-
-
0037390902
-
Fast accurate fuzzy clustering through data reduction
-
Apr.
-
S. Eschrich, J. Ke, L. Hall, and D. Goldgof, “Fast accurate fuzzy clustering through data reduction,” IEEE Trans. Fuzzy Syst., vol. 11, no. 2, pp. 262–270, Apr. 2003.
-
(2003)
IEEE Trans. Fuzzy Syst.
, vol.11
, Issue.2
, pp. 262-270
-
-
Eschrich, S.1
Ke, J.2
Hall, L.3
Goldgof, D.4
-
15
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Mar.
-
S. Fine and K. Scheinberg, “Efficient SVM training using low-rank kernel representations,” J. Mach. Learn. Res., vol. 2, no. 2, pp. 243–264, Mar. 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, Issue.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
16
-
-
34047225880
-
Twin support vector machines for pattern classification
-
May
-
Jayadeva, R. Khemchandani, and S. Chandra, “Twin support vector machines for pattern classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 5, pp. 905–910, May 2007.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.5
, pp. 905-910
-
-
Jayadeva1
Khemchandani, R.2
Chandra, S.3
-
17
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
Cambridge, MA: MIT Press
-
T. Joachims, “Making large-scale support vector machine learning practical,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 169–184.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
18
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt's SMO algorithm for SVM design,” Neural Comput., vol. 13, no. 3, pp. 637–649, 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
19
-
-
33746813627
-
A novel and quick SVM-based multiclass classifier
-
Nov.
-
Y. Liu, Z. You, and L. Cao, “A novel and quick SVM-based multiclass classifier,” Pattern Recognit., vol. 39, no. 11, pp. 2258–2264, Nov. 2006.
-
(2006)
Pattern Recognit.
, vol.39
, Issue.11
, pp. 2258-2264
-
-
Liu, Y.1
You, Z.2
Cao, L.3
-
20
-
-
34548591793
-
Bit reduction support vector machine
-
T. Luo, L. O. Hall, D. B. Goldgof, and A. Remsen, “Bit reduction support vector machine,” in Proc. 5th IEEE ICDM, 2005, pp. 733–736.
-
(2005)
Proc. 5th IEEE ICDM
, pp. 733-736
-
-
Luo, T.1
Hall, L.O.2
Goldgof, D.B.3
Remsen, A.4
-
21
-
-
10044219654
-
Active learning to recognize multiple types of plankton
-
T. Luo, K. Kramer, D. Goldgof, L. Hall, S. Samson, A. Remsen, and T. Hopkins, “Active learning to recognize multiple types of plankton,” in Proc. 17th Conf. Int. Assoc. Pattern Recognit., 2004, vol. 3, pp. 478–481.
-
(2004)
Proc. 17th Conf. Int. Assoc. Pattern Recognit.
, vol.3
, pp. 478-481
-
-
Luo, T.1
Kramer, K.2
Goldgof, D.3
Hall, L.4
Samson, S.5
Remsen, A.6
Hopkins, T.7
-
22
-
-
3442875566
-
Recognizing plankton images from the shadow image particle profiling evaluation recorder
-
Aug.
-
T. Luo, K. Kramer, D. Goldgof, L. Hall, S. Samson, A. Remsen, and T. Hopkins, “Recognizing plankton images from the shadow image particle profiling evaluation recorder,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 4, pp. 1753–1762, Aug. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.34
, Issue.4
, pp. 1753-1762
-
-
Luo, T.1
Kramer, K.2
Goldgof, D.3
Hall, L.4
Samson, S.5
Remsen, A.6
Hopkins, T.7
-
23
-
-
0036100902
-
Likelihood-based data squashing: A modeling approach to instance construction
-
Apr.
-
D. Madigan, N. Raghavan, W. Dumouchel, M. Nason, C. Posse, and G. Ridgeway, “Likelihood-based data squashing: A modeling approach to instance construction,” Data Mining Knowl. Discov., vol. 6, no. 2, pp. 173–190, Apr. 2002.
-
(2002)
Data Mining Knowl. Discov.
, vol.6
, Issue.2
, pp. 173-190
-
-
Madigan, D.1
Raghavan, N.2
Dumouchel, W.3
Nason, M.4
Posse, C.5
Ridgeway, G.6
-
24
-
-
0347512512
-
Lagrangian support vector machines
-
Sep.
-
O. L. Mangasarian and D. R. Musicant, “Lagrangian support vector machines,” J. Mach. Learn. Res., vol. 1, pp. 161–177, Sep. 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 161-177
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
26
-
-
0003612091
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine Learning, Neural and Statistical Classification. Englewood Cliffs, NJ: Prentice-Hall, 1994.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
Michie, D.1
Spiegelhalter, D.J.2
Taylor, C.C.3
-
27
-
-
0001562735
-
Reducing the run-time complexity in support vector machines
-
Cambridge, MA: MIT Press
-
E. Osuna and F. Girosi, “Reducing the run-time complexity in support vector machines,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 271–283.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 271-283
-
-
Osuna, E.1
Girosi, F.2
-
28
-
-
0037242790
-
Data squashing by empirical likelihood
-
Jan.
-
A. Owen, “Data squashing by empirical likelihood,” Data Mining Knowl. Discov., vol. 7, no. 1, pp. 101–113, Jan. 2003.
-
(2003)
Data Mining Knowl. Discov.
, vol.7
, Issue.1
, pp. 101-113
-
-
Owen, A.1
-
29
-
-
0034593060
-
Towards scalable support vector machines using squashing
-
D. Pavlov, D. Chudova, and P. Smyth, “Towards scalable support vector machines using squashing,” in Proc. 6th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2000, pp. 295–299.
-
(2000)
Proc. 6th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining
, pp. 295-299
-
-
Pavlov, D.1
Chudova, D.2
Smyth, P.3
-
30
-
-
34147093886
-
Scaling-up support vector machines using boosting algorithm
-
D. Pavlov, J. Mao, and B. Dom, “Scaling-up support vector machines using boosting algorithm,” in Proc. 15th Int. Conf. Pattern Recog., 2000, vol. 2, pp. 219–222.
-
(2000)
Proc. 15th Int. Conf. Pattern Recog.
, vol.2
, pp. 219-222
-
-
Pavlov, D.1
Mao, J.2
Dom, B.3
-
31
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Cambridge, MA: MIT Press
-
J. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185–208.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
32
-
-
0342502195
-
Soft margins for AdaBoost
-
Mar
-
G. Ratsch, T. Onoda, and K. Muller, “Soft margins for AdaBoost,” Mach. Learn., vol. 42, no. 3, pp. 287–320, Mar. 2001.
-
(2001)
Mach. Learn.
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.3
-
33
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radialbasis function classifiers
-
Nov.
-
B. Scholkopf, S. Kah-Kay, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, “Comparing support vector machines with Gaussian kernels to radialbasis function classifiers,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2758–2765, Nov. 1997.
-
(1997)
IEEE Trans. Signal Process
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Scholkopf, B.1
Kah-Kay, S.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.7
-
34
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
Sep.
-
B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K. R. Muller, G. Ratsch, and A. Smola, “Input space versus feature space in kernel-based methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Scholkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Muller, K.R.5
Ratsch, G.6
Smola, A.7
-
36
-
-
1942452235
-
Text bundling: Statistics based data-reduction
-
Y. C. L. Shih, J. D. M. Rennie, and D. R. Karger, “Text bundling: Statistics based data-reduction,” in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 696–703.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn.
, pp. 696-703
-
-
Shih, Y.C.L.1
Rennie, J.D.M.2
Karger, D.R.3
-
37
-
-
13244265605
-
Lidar signal denoising using least-squares support vector machine
-
Feb.
-
B.-Y. Sun, D.-S. Huang, and H.-T. Fang, “Lidar signal denoising using least-squares support vector machine,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 101–104, Feb. 2005.
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.2
, pp. 101-104
-
-
Sun, B.-Y.1
Huang, D.-S.2
Fang, H.-T.3
-
38
-
-
0031648023
-
Example-based learning for view-based human face detection
-
Jan.
-
K.-K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 39–51, Jan. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.1
, pp. 39-51
-
-
Sung, K.-K.1
Poggio, T.2
-
39
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
Dec.
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast SVM training on very large data sets,” J. Mach. Learn. Res., vol. 6, pp. 363–392, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 363-392
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
41
-
-
33847409742
-
1-SVMs in primal space
-
Mar.
-
1-SVMs in primal space,” Neurocomputing, vol. 70, no. 7–9, pp. 1554–1560, Mar. 2007.
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1554-1560
-
-
Wang, L.1
Sun, S.2
Zhang, K.3
-
43
-
-
33749570329
-
Incremental approximate matrix factorization for speeding up support vector machines
-
G. Wu, E. Chang, Y.-K. Chen, and C. Hughes, “Incremental approximate matrix factorization for speeding up support vector machines,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2006, pp. 760–766.
-
(2006)
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining
, pp. 760-766
-
-
Wu, G.1
Chang, E.2
Chen, Y.-K.3
Hughes, C.4
-
44
-
-
77952390455
-
Classifying large data sets using svm with hierarchical clusters
-
H. Yu, J. Yang, and J. Han, “Classifying large data sets using svm with hierarchical clusters,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2003, pp. 306–315.
-
(2003)
Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining
, pp. 306-315
-
-
Yu, H.1
Yang, J.2
Han, J.3
|