메뉴 건너뛰기




Volumn 39, Issue 4, 2009, Pages 989-1001

Fast Support Vector Machines for Continuous Data

Author keywords

Compression; data squashing; speedup; support vector machines (SVMs)

Indexed keywords


EID: 85008065094     PISSN: 10834419     EISSN: 19410492     Source Type: Journal    
DOI: 10.1109/TSMCB.2008.2011645     Document Type: Article
Times cited : (20)

References (45)
  • 1
    • 34047218906 scopus 로고    scopus 로고
    • Scalable non-linear support vector machine using hierarchical clustering
    • S. Asharaf and M. N. Murty, “Scalable non-linear support vector machine using hierarchical clustering,” in Proc. Int. Conf. Pattern Recog., 2006, vol. 1, pp. 908–911.
    • (2006) Proc. Int. Conf. Pattern Recog. , vol.1 , pp. 908-911
    • Asharaf, S.1    Murty, M.N.2
  • 3
    • 2942555397 scopus 로고    scopus 로고
    • Training support vector machines using adaptive clustering
    • D. Boley and D. Cao, “Training support vector machines using adaptive clustering,” in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 126–137.
    • (2004) Proc. SIAM Int. Conf. Data Mining , pp. 126-137
    • Boley, D.1    Cao, D.2
  • 4
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • C. J. C. Burges, “Simplified support vector decision rules,” in Proc. Int. Conf. Mach. Learn., 1996, pp. 71–77.
    • (1996) Proc. Int. Conf. Mach. Learn. , pp. 71-77
    • Burges, C.J.C.1
  • 5
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • C. J. C. Burges and B. Scholkopf, “Improving the accuracy and speed of support vector machines,” in Proc. Adv. Neural Inform. Process. Syst., 1997, vol. 9, pp. 375–381.
    • (1997) Proc. Adv. Neural Inform. Process. Syst. , vol.9 , pp. 375-381
    • Burges, C.J.C.1    Scholkopf, B.2
  • 6
    • 33746869623 scopus 로고    scopus 로고
    • Parallel sequential minimal optimization for the training of support vector machines
    • Jul.
    • L. Cao, S. Keerthi, C.-J. Ong, J. Zhang, U. Periyathamby, X.-J. Fu, and H. Lee, “Parallel sequential minimal optimization for the training of support vector machines,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 1039–1049, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 1039-1049
    • Cao, L.1    Keerthi, S.2    Ong, C.-J.3    Zhang, J.4    Periyathamby, U.5    Fu, X.-J.6    Lee, H.7
  • 9
    • 0038605699 scopus 로고    scopus 로고
    • Scaling large learning problems with hard parallel mixtures
    • R. Collobert, Y. Bengio, and S. Bengio, “Scaling large learning problems with hard parallel mixtures,” Int. J. Pattern Recogn. Artif. Intell., vol. 17, no. 3, pp. 349–365, 2003.
    • (2003) Int. J. Pattern Recogn. Artif. Intell. , vol.17 , Issue.3 , pp. 349-365
    • Collobert, R.1    Bengio, Y.2    Bengio, S.3
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Oct.
    • T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms,” Neural Comput., vol. 10, no. 7, pp. 1895–1924, Oct. 1998.
    • (1998) Neural Comput. , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 14
    • 0037390902 scopus 로고    scopus 로고
    • Fast accurate fuzzy clustering through data reduction
    • Apr.
    • S. Eschrich, J. Ke, L. Hall, and D. Goldgof, “Fast accurate fuzzy clustering through data reduction,” IEEE Trans. Fuzzy Syst., vol. 11, no. 2, pp. 262–270, Apr. 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.2 , pp. 262-270
    • Eschrich, S.1    Ke, J.2    Hall, L.3    Goldgof, D.4
  • 15
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Mar.
    • S. Fine and K. Scheinberg, “Efficient SVM training using low-rank kernel representations,” J. Mach. Learn. Res., vol. 2, no. 2, pp. 243–264, Mar. 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , Issue.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 16
    • 34047225880 scopus 로고    scopus 로고
    • Twin support vector machines for pattern classification
    • May
    • Jayadeva, R. Khemchandani, and S. Chandra, “Twin support vector machines for pattern classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 5, pp. 905–910, May 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva1    Khemchandani, R.2    Chandra, S.3
  • 17
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Cambridge, MA: MIT Press
    • T. Joachims, “Making large-scale support vector machine learning practical,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 169–184.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 18
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt's SMO algorithm for SVM design,” Neural Comput., vol. 13, no. 3, pp. 637–649, 2001.
    • (2001) Neural Comput. , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 19
    • 33746813627 scopus 로고    scopus 로고
    • A novel and quick SVM-based multiclass classifier
    • Nov.
    • Y. Liu, Z. You, and L. Cao, “A novel and quick SVM-based multiclass classifier,” Pattern Recognit., vol. 39, no. 11, pp. 2258–2264, Nov. 2006.
    • (2006) Pattern Recognit. , vol.39 , Issue.11 , pp. 2258-2264
    • Liu, Y.1    You, Z.2    Cao, L.3
  • 23
    • 0036100902 scopus 로고    scopus 로고
    • Likelihood-based data squashing: A modeling approach to instance construction
    • Apr.
    • D. Madigan, N. Raghavan, W. Dumouchel, M. Nason, C. Posse, and G. Ridgeway, “Likelihood-based data squashing: A modeling approach to instance construction,” Data Mining Knowl. Discov., vol. 6, no. 2, pp. 173–190, Apr. 2002.
    • (2002) Data Mining Knowl. Discov. , vol.6 , Issue.2 , pp. 173-190
    • Madigan, D.1    Raghavan, N.2    Dumouchel, W.3    Nason, M.4    Posse, C.5    Ridgeway, G.6
  • 24
    • 0347512512 scopus 로고    scopus 로고
    • Lagrangian support vector machines
    • Sep.
    • O. L. Mangasarian and D. R. Musicant, “Lagrangian support vector machines,” J. Mach. Learn. Res., vol. 1, pp. 161–177, Sep. 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 161-177
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 27
    • 0001562735 scopus 로고    scopus 로고
    • Reducing the run-time complexity in support vector machines
    • Cambridge, MA: MIT Press
    • E. Osuna and F. Girosi, “Reducing the run-time complexity in support vector machines,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 271–283.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 271-283
    • Osuna, E.1    Girosi, F.2
  • 28
    • 0037242790 scopus 로고    scopus 로고
    • Data squashing by empirical likelihood
    • Jan.
    • A. Owen, “Data squashing by empirical likelihood,” Data Mining Knowl. Discov., vol. 7, no. 1, pp. 101–113, Jan. 2003.
    • (2003) Data Mining Knowl. Discov. , vol.7 , Issue.1 , pp. 101-113
    • Owen, A.1
  • 30
    • 34147093886 scopus 로고    scopus 로고
    • Scaling-up support vector machines using boosting algorithm
    • D. Pavlov, J. Mao, and B. Dom, “Scaling-up support vector machines using boosting algorithm,” in Proc. 15th Int. Conf. Pattern Recog., 2000, vol. 2, pp. 219–222.
    • (2000) Proc. 15th Int. Conf. Pattern Recog. , vol.2 , pp. 219-222
    • Pavlov, D.1    Mao, J.2    Dom, B.3
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge, MA: MIT Press
    • J. Platt, “Fast training of support vector machines using sequential minimal optimization,” in Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185–208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 32
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Mar
    • G. Ratsch, T. Onoda, and K. Muller, “Soft margins for AdaBoost,” Mach. Learn., vol. 42, no. 3, pp. 287–320, Mar. 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.3
  • 33
    • 0031272926 scopus 로고    scopus 로고
    • Comparing support vector machines with Gaussian kernels to radialbasis function classifiers
    • Nov.
    • B. Scholkopf, S. Kah-Kay, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, “Comparing support vector machines with Gaussian kernels to radialbasis function classifiers,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2758–2765, Nov. 1997.
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.11 , pp. 2758-2765
    • Scholkopf, B.1    Kah-Kay, S.2    Burges, C.3    Girosi, F.4    Niyogi, P.5    Poggio, T.6    Vapnik, V.7
  • 37
    • 13244265605 scopus 로고    scopus 로고
    • Lidar signal denoising using least-squares support vector machine
    • Feb.
    • B.-Y. Sun, D.-S. Huang, and H.-T. Fang, “Lidar signal denoising using least-squares support vector machine,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 101–104, Feb. 2005.
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.2 , pp. 101-104
    • Sun, B.-Y.1    Huang, D.-S.2    Fang, H.-T.3
  • 38
    • 0031648023 scopus 로고    scopus 로고
    • Example-based learning for view-based human face detection
    • Jan.
    • K.-K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 39–51, Jan. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.1 , pp. 39-51
    • Sung, K.-K.1    Poggio, T.2
  • 39
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Dec.
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast SVM training on very large data sets,” J. Mach. Learn. Res., vol. 6, pp. 363–392, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 41
    • 33847409742 scopus 로고    scopus 로고
    • 1-SVMs in primal space
    • Mar.
    • 1-SVMs in primal space,” Neurocomputing, vol. 70, no. 7–9, pp. 1554–1560, Mar. 2007.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1554-1560
    • Wang, L.1    Sun, S.2    Zhang, K.3
  • 42
    • 84899010839 scopus 로고    scopus 로고
    • Using the nystrom method to speed up kernel machines
    • Cambridge, MA: MIT Press
    • C. K. I. Williams and M. Seeger, “Using the nystrom method to speed up kernel machines,” in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, pp. 682–688.
    • (2001) Advances in Neural Information Processing Systems , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.