-
1
-
-
0242383466
-
K-SVCR. A support vector machine for multi-class classification
-
Angulo C., Parra X., and Català A. K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55 1-2 (2003) 57-77
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 57-77
-
-
Angulo, C.1
Parra, X.2
Català, A.3
-
2
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu C.-W., and Lin C.-J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13 2 (2002) 415-425
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
3
-
-
26444573178
-
-
K. Duan, S.S. Keerthi, Which is the best multi-class SVM method? An empirical study, Proceedings of the Sixth International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, pp. 278-285.
-
-
-
-
4
-
-
2142775432
-
Multi-category support vector machines: theory and application to the classification of microarray data and satellite radiance data
-
Lee Y., Lin Y., and Wahba G. Multi-category support vector machines: theory and application to the classification of microarray data and satellite radiance data. J. Am. Statist. Assoc. Theory Methods 99 465 (2004) 67-81
-
(2004)
J. Am. Statist. Assoc. Theory Methods
, vol.99
, Issue.465
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
5
-
-
10944256662
-
-
D. Anguita, S. Ridella, D. Sterpi, A new method for multi-class support vector machines. Proceedings of the IEEE International Joint Conference on Neural Networks, IJCNN 2004, Budapest, Hungary, July 2004, pp. 412-417.
-
-
-
-
6
-
-
0035503160
-
Support vector machines and the multiple hypothesis test problem
-
Sebald D.J., and Bucklew J.A. Support vector machines and the multiple hypothesis test problem. IEEE Trans. Signal Process. 49 11 (2001) 2865-2872
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.11
, pp. 2865-2872
-
-
Sebald, D.J.1
Bucklew, J.A.2
-
7
-
-
0001849156
-
Multi-category classification by support vector machines
-
Bredensteiner E.J., and Bennett K.P. Multi-category classification by support vector machines. Comput. Optim. Appl. 12 (1999) 53-79
-
(1999)
Comput. Optim. Appl.
, vol.12
, pp. 53-79
-
-
Bredensteiner, E.J.1
Bennett, K.P.2
-
8
-
-
0036470106
-
Multi-class LS-SVMs: moderated outputs and coding-decoding schemes
-
Van Gestel T., Suykens J.A.K., Lanckriet G., et al. Multi-class LS-SVMs: moderated outputs and coding-decoding schemes. Neural Process. Lett. 15 1 (2002) 45-58
-
(2002)
Neural Process. Lett.
, vol.15
, Issue.1
, pp. 45-58
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Lanckriet, G.3
-
9
-
-
17644437641
-
Advanced support vector machines and kernel methods
-
David V., and Sánchez A. Advanced support vector machines and kernel methods. Neurocomputing 55 1-2 (2003) 5-20
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 5-20
-
-
David, V.1
Sánchez, A.2
-
10
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 (1998) 121-167
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
11
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, USA
-
Joachims T. Making large-scale SVM learning practical. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1998), MIT Press, Cambridge, USA 41-56
-
(1998)
Advances in Kernel Methods-Support Vector Learning
, pp. 41-56
-
-
Joachims, T.1
-
12
-
-
0345376662
-
A comparative analysis of structural risk minimization by support vector machines and nearest neighbor rule
-
Karaçalí B., Ramanath R., and Snyder W.E. A comparative analysis of structural risk minimization by support vector machines and nearest neighbor rule. Pattern Recognition Lett. 25 1 (2004) 63-71
-
(2004)
Pattern Recognition Lett.
, vol.25
, Issue.1
, pp. 63-71
-
-
Karaçalí, B.1
Ramanath, R.2
Snyder, W.E.3
-
13
-
-
10244219830
-
A heuristic training for support vector regression
-
Wang W., and Xu Z. A heuristic training for support vector regression. Neurocomputing 61 (2004) 259-275
-
(2004)
Neurocomputing
, vol.61
, pp. 259-275
-
-
Wang, W.1
Xu, Z.2
-
14
-
-
0242456244
-
A method to make multiple hypotheses with high cumulative recognition rate using SVMs
-
Maruyama K.-I., Maruyama M., Miyao H., and Nakano Y. A method to make multiple hypotheses with high cumulative recognition rate using SVMs. Pattern Recognition 37 2 (2004) 241-251
-
(2004)
Pattern Recognition
, vol.37
, Issue.2
, pp. 241-251
-
-
Maruyama, K.-I.1
Maruyama, M.2
Miyao, H.3
Nakano, Y.4
-
15
-
-
0037239497
-
Mean field method for the support vector machine regression
-
Gao J.B., Gunn S.R., and Harris C.J. Mean field method for the support vector machine regression. Neurocomputing 50 (2003) 391-405
-
(2003)
Neurocomputing
, vol.50
, pp. 391-405
-
-
Gao, J.B.1
Gunn, S.R.2
Harris, C.J.3
-
16
-
-
22844434217
-
Unified dual for bi-class SVM approaches
-
González L., Angulo C., Velasco F., and Català A. Unified dual for bi-class SVM approaches. Pattern Recognition 38 10 (2005) 1772-1774
-
(2005)
Pattern Recognition
, vol.38
, Issue.10
, pp. 1772-1774
-
-
González, L.1
Angulo, C.2
Velasco, F.3
Català, A.4
-
17
-
-
84888364466
-
Large margin DAGs for multi-class classification
-
Solla S.A., Leen T.K., and Miiller K.-R. (Eds), MIT Press, Cambridge, MA
-
Platt J.C., Cristianini N., and Taylor J.S. Large margin DAGs for multi-class classification. In: Solla S.A., Leen T.K., and Miiller K.-R. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA 547-553
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 547-553
-
-
Platt, J.C.1
Cristianini, N.2
Taylor, J.S.3
-
18
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Mozer M., Jordan M., and Petsche T. (Eds), MIT Press, Cambridge, MA
-
Vapnik V., Golowich S., and Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M., Jordan M., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), MIT Press, Cambridge, MA 281-287
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
|