-
1
-
-
0033687514
-
Chemical and biological applications of porous silicon technology
-
M. P. Stewart and J. M. Buriak, “Chemical and biological applications of porous silicon technology,” Adv. Mater., vol. 12, pp. 859–869, 2000.
-
(2000)
Adv. Mater.
, vol.12
, pp. 859-869
-
-
Stewart, M.P.1
Buriak, J.M.2
-
2
-
-
22044457467
-
Microporous silicon and biosensor development: Structural analysis, electrical characterisation and biocapacity evaluation
-
B. Lillis, C. Jungk, D. Iacopino, A. Whelton, E. Hurley, M. Sheehan, A. Splinter, A. Quinn, G. Redmond, and W. A. Lane, “Microporous silicon and biosensor development: Structural analysis, electrical characterisation and biocapacity evaluation,” Biosens. Bioelectron., vol. 21, pp. 282–292, 2005.
-
(2005)
Biosens. Bioelectron.
, vol.21
, pp. 282-292
-
-
Lillis, B.1
Jungk, C.2
Iacopino, D.3
Whelton, A.4
Hurley, E.5
Sheehan, M.6
Splinter, A.7
Quinn, A.8
Redmond, G.9
Lane, W.A.10
-
3
-
-
25844468611
-
Towards a label-free optical porous silicon DNA sensor
-
G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron., vol. 21, pp. 661–665, 2005.
-
(2005)
Biosens. Bioelectron.
, vol.21
, pp. 661-665
-
-
Francia, G.D.1
Ferrara, V.L.2
Manzo, S.3
Chiavarini, S.4
-
4
-
-
0027664610
-
Chemical modification of the photoluminescence quenching of porous silicon
-
J. M. Lauerhaas and M. J. Sailor, “Chemical modification of the photoluminescence quenching of porous silicon,” Science, vol. 261, pp. 1567–1568, 1993.
-
(1993)
Science
, vol.261
, pp. 1567-1568
-
-
Lauerhaas, J.M.1
Sailor, M.J.2
-
5
-
-
0031730953
-
A study of hydrogen detection with palladium modified porous silicon
-
V. Polishchuk, E. Souteyrand, J. R. Martin, V. I. Strikha, and V. A. Skryshevsky, “A study of hydrogen detection with palladium modified porous silicon,” Anal. Chim. Acta, vol. 375, pp. 205–210, 1998.
-
(1998)
Anal. Chim. Acta
, vol.375
, pp. 205-210
-
-
Polishchuk, V.1
Souteyrand, E.2
Martin, J.R.3
Strikha, V.I.4
Skryshevsky, V.A.5
-
6
-
-
0030719247
-
Miniaturization of potentiometric sensors using porous silicon microtechnology
-
M. J. Schöning, F. Ronkel, M. Crott, M. Thust, J. W. Schultze, P. Kordos, and H. Luth, “Miniaturization of potentiometric sensors using porous silicon microtechnology,” Electrochim. Acta, vol. 42, pp. 3185–3193, 1997.
-
(1997)
Electrochim. Acta
, vol.42
, pp. 3185-3193
-
-
Schöning, M.J.1
Ronkel, F.2
Crott, M.3
Thust, M.4
Schultze, J.W.5
Kordos, P.6
Luth, H.7
-
7
-
-
0345440112
-
Porous silicon as substrate for ion sensors
-
M. B. Ali, R. Mlika, H. B. Ouada, R. M’ghaïeth, and H. Maaref, “Porous silicon as substrate for ion sensors,” Sens. Actuators A: Physical, vol. 74, pp. 123–125, 1999.
-
(1999)
Sens. Actuators A: Physical
, vol.74
, pp. 123-125
-
-
Ali, M.B.1
Mlika, R.2
Ouada, H.B.3
M’ghaïeth, R.4
Maaref, H.5
-
8
-
-
0029760774
-
Porous silicon as a substrate material for potentiometric biosensors
-
M. Thust, M. J. Schoning, S. Frohnhoff, R. Arens-Fischer, P. Kordos, and H. Luth, “Porous silicon as a substrate material for potentiometric biosensors,” Meas. Sci. Technol., vol. 7, pp. 26–29, 1996.
-
(1996)
Meas. Sci. Technol.
, vol.7
, pp. 26-29
-
-
Thust, M.1
Schoning, M.J.2
Frohnhoff, S.3
Arens-Fischer, R.4
Kordos, P.5
Luth, H.6
-
9
-
-
30244465510
-
Structural and optical properties of porous silicon at different porosities
-
G. D. Francia, S. Turchini, T. Prosperi, F. Martelli, G. Amato, and M. D. Santis, “Structural and optical properties of porous silicon at different porosities,” J. Appl. Phys., vol. 76, pp. 3787–3790, 1994.
-
(1994)
J. Appl. Phys.
, vol.76
, pp. 3787-3790
-
-
Francia, G.D.1
Turchini, S.2
Prosperi, T.3
Martelli, F.4
Amato, G.5
Santis, M.D.6
-
10
-
-
0009311971
-
Microstructure, heat treatment, and oxidation study of porous silicon formed on moderately doped p-type silicon
-
D. W. Zheng, Y. P. Huang, Z. J. He, A. Z. Li, T. A. Tang, R. Kwor, Q. Cui, and X. J. Zhang, “Microstructure, heat treatment, and oxidation study of porous silicon formed on moderately doped p-type silicon,” J. Appl. Phys., vol. 76, pp. 492–496, 1997.
-
(1997)
J. Appl. Phys.
, vol.76
, pp. 492-496
-
-
Zheng, D.W.1
Huang, Y.P.2
He, Z.J.3
Li, A.Z.4
Tang, T.A.5
Kwor, R.6
Cui, Q.7
Zhang, X.J.8
-
11
-
-
5044242424
-
Porous silicon matrix for application in biology
-
A. Angelescu, I. Kleps, M. Mihaela, M. Simion, T. Neghina, S. Pe-trescu, N. Maldovan, C. Paduraru, and A. Radukanu, “Porous silicon matrix for application in biology,” Rev. Adv. Mater. Sci., vol. 5, pp. 440–449, 2003.
-
(2003)
Rev. Adv. Mater. Sci.
, vol.5
, pp. 440-449
-
-
Angelescu, A.1
Kleps, I.2
Mihaela, M.3
Simion, M.4
Neghina, T.5
Pe-trescu, S.6
Maldovan, N.7
Paduraru, C.8
Radukanu, A.9
-
12
-
-
33644647612
-
Biofunctionalisation of porous silicon surfaces by using homobifunctional cross-linkers
-
X. Bing, X. D. Shou, G. J. Wang, J. Chao, H. Liu, J. Pei, Y. Chen, Y. Tang, and J. Liu, “Biofunctionalisation of porous silicon surfaces by using homobifunctional cross-linkers,” J. Mater. Chem., vol. 6, pp. 570–578, 2006.
-
(2006)
J. Mater. Chem.
, vol.6
, pp. 570-578
-
-
Bing, X.1
Shou, X.D.2
Wang, G.J.3
Chao, J.4
Liu, H.5
Pei, J.6
Chen, Y.7
Tang, Y.8
Liu, J.9
-
13
-
-
33645845682
-
A high sensitivity amperometric biosensor using laccase as biorecognition element
-
F. Vianello, S. Ragusa, M. T. Cambria, and A. Rigo, “A high sensitivity amperometric biosensor using laccase as biorecognition element,” Biosens. Bioelectron., vol. 21, pp. 2155–2160, 2006.
-
(2006)
Biosens. Bioelectron.
, vol.21
, pp. 2155-2160
-
-
Vianello, F.1
Ragusa, S.2
Cambria, M.T.3
Rigo, A.4
-
14
-
-
0004047147
-
Environmental Chemistry
-
New York: Lewis.
-
S. E. Manahan. Environmental Chemistry. New York: Lewis. 1991.
-
(1991)
-
-
Manahan, S.E.1
-
15
-
-
3543050047
-
Phenol and catechol induce prehe-molytic and hemolytic changes in human erythrocytes
-
B. Bukowska and S. Kowalska, “Phenol and catechol induce prehe-molytic and hemolytic changes in human erythrocytes,” Toxicol. Lett., vol. 152, pp. 73–84, 2004.
-
(2004)
Toxicol. Lett.
, vol.152
, pp. 73-84
-
-
Bukowska, B.1
Kowalska, S.2
-
16
-
-
0022323885
-
Quinones as toxic metabolites of benzene
-
R. D. Irons, “Quinones as toxic metabolites of benzene,” J. Toxicol. Environ. Health, vol. 16, pp. 673–678, 1985.
-
(1985)
J. Toxicol. Environ. Health
, vol.16
, pp. 673-678
-
-
Irons, R.D.1
-
17
-
-
30144436017
-
Post-column detection of benzenediols and 1, 2, 4- benzenetriol based on acidic potassium permanganate chemiluinescence
-
S. Fan, L. Zhang, and J. Lin, “Post-column detection of benzenediols and 1,2,4- benzenetriol based on acidic potassium permanganate chemiluinescence,” Talanta, vol. 68, pp. 646–652, 2006.
-
(2006)
Talanta
, vol.68
, pp. 646-652
-
-
Fan, S.1
Zhang, L.2
Lin, J.3
-
18
-
-
33846030838
-
Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke
-
S. C. Moldoveanu and M. Kiser, “Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke,” J. Chromatography A, vol. 1141, pp. 90–97, 2007.
-
(2007)
J. Chromatography A
, vol.1141
, pp. 90-97
-
-
Moldoveanu, S.C.1
Kiser, M.2
-
19
-
-
33847164008
-
On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol
-
E. C. Figueiredo, C. R. T. Tarley, L. T. Kubota, S. Rath, and M. A. Z. Arruda, “On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol,” Microchemical J., vol. 85, pp. 290–296, 2007.
-
(2007)
Microchemical J.
, vol.85
, pp. 290-296
-
-
Figueiredo, E.C.1
Tarley, C.R.T.2
Kubota, L.T.3
Rath, S.4
Arruda, M.A.Z.5
-
20
-
-
19744374634
-
Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection
-
M. J. Schoning, M. Jacobs, A. Muck, D. T. Knobbe, J. Wang, M. Cha-trathi and S. Spillmann, “Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection,” Sens. Actuators B, vol. 108, pp. 688–694, 2005.
-
(2005)
Sens. Actuators B
, vol.108
, pp. 688-694
-
-
Schoning, M.J.1
Jacobs, M.2
Muck, A.3
Knobbe, D.T.4
Wang, J.5
Cha-trathi, M.6
Spillmann, S.7
-
21
-
-
27144491312
-
A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals
-
Y. Ma, C. Yang, N. Li, and X. Yang, “A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals ” Talanta. vol. 67. pp. 979–983. 2005.
-
(2005)
Talanta.
, vol.67
, pp. 979-983
-
-
Ma, Y.1
Yang, C.2
Li, N.3
Yang, X.4
-
22
-
-
34447617513
-
Voltammetric determination of catechol using a sonogel carbon electrode modified with nanostructured titanium dioxide
-
S. K. Lunsford, H. Choi, J. Stinson, A. Yeary, and D. D. Dionysiou, “Voltammetric determination of catechol using a sonogel carbon electrode modified with nanostructured titanium dioxide,” Talanta, vol. 73, pp. 172–177, 2007.
-
(2007)
Talanta
, vol.73
, pp. 172-177
-
-
Lunsford, S.K.1
Choi, H.2
Stinson, J.3
Yeary, A.4
Dionysiou, D.D.5
-
23
-
-
33845644653
-
Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase
-
S. Tembe, S. Inamdar, S. Haram, M. Karve, and S. F. D’Souza, “Electrochemical biosensor for catechol using agarose-guar gum entrapped tyrosinase,” J. Biotechnol., vol. 128, pp. 80–85, 2007.
-
(2007)
J. Biotechnol.
, vol.128
, pp. 80-85
-
-
Tembe, S.1
Inamdar, S.2
Haram, S.3
Karve, M.4
D’Souza, S.F.5
-
24
-
-
10244225276
-
A new tyrosinase biosensor based on covalent immobilization of enzyme on N-(3-aminopropyl)pyrrole polymer film
-
Rajesh and K. Kaneto
-
Rajesh and K. Kaneto, “A new tyrosinase biosensor based on covalent immobilization of enzyme on N-(3-aminopropyl)pyrrole polymer film,” Current Appl. Phys., vol. 5, pp. 178–183, 2005.
-
(2005)
Current Appl. Phys.
, vol.5
, pp. 178-183
-
-
-
25
-
-
33750310564
-
Development of a high analytical performance-ty-rosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles
-
V. Carralero, M. L. Mena, A. Gonzalez-Cortes, P. Yanez-Sedeno, and J. M. Pingarron, “Development of a high analytical performance-ty-rosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles,” Biosens. Bioelectron., vol. 22, pp. 730–736, 2006.
-
(2006)
Biosens. Bioelectron.
, vol.22
, pp. 730-736
-
-
Carralero, V.1
Mena, M.L.2
Gonzalez-Cortes, A.3
Yanez-Sedeno, P.4
Pingarron, J.M.5
-
26
-
-
0242390203
-
Amperometric sensors based on tyrosinase-modified screen-printed arrays
-
S. Sapelnikova, E. Dock, T. Ruzgas, and J. Emneus, “Amperometric sensors based on tyrosinase-modified screen-printed arrays,” Talanta, vol. 61, pp. 473–483, 2003.
-
(2003)
Talanta
, vol.61
, pp. 473-483
-
-
Sapelnikova, S.1
Dock, E.2
Ruzgas, T.3
Emneus, J.4
-
27
-
-
0035807740
-
Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes
-
S. Cosnier, S. Szunerits, R. S. Marks, J. Lellouche, and K. Perie, “Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes,” J. Biochem. Biophys. Methods, vol. 50, pp. 65–77.
-
J. Biochem. Biophys. Methods
, vol.50
, pp. 65-77
-
-
Cosnier, S.1
Szunerits, S.2
Marks, R.S.3
Lellouche, J.4
Perie, K.5
-
28
-
-
0029043585
-
Tyrosinase graphite-epoxy based composite electrodes for detection of phenols
-
P. Onnerfjord, J. Emneus, G. Marko-Verga, L. Gorton, F. Ortega, and E. Dominguez, “Tyrosinase graphite-epoxy based composite electrodes for detection of phenols,” Biosens. Bioelectron., vol. 10, pp. 607–619, 1995.
-
(1995)
Biosens. Bioelectron.
, vol.10
, pp. 607-619
-
-
Onnerfjord, P.1
Emneus, J.2
Marko-Verga, G.3
Gorton, L.4
Ortega, F.5
Dominguez, E.6
-
29
-
-
34347357385
-
Amperometric biosensors based on multiwalled carbon nanotube-nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds
-
Y. Tsai and C. Chiu, “Amperometric biosensors based on multiwalled carbon nanotube-nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds,” Sens. Actuators B: Chem., vol. 125, pp. 10–10, 2007.
-
(2007)
Sens. Actuators B: Chem.
, vol.125
, pp. 10
-
-
Tsai, Y.1
Chiu, C.2
-
30
-
-
33748508196
-
Chi-tosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization
-
J. Abdullah, M. Ahmad, L. Heng, N. Karuppiah, and H. Sidek, “Chi-tosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization,” Talanta, vol. 70, pp. 527–532, 2006.
-
(2006)
Talanta
, vol.70
, pp. 527-532
-
-
Abdullah, J.1
Ahmad, M.2
Heng, L.3
Karuppiah, N.4
Sidek, H.5
-
31
-
-
33845379004
-
Regioselective oxidation of phenols catalyzed by polyphenol oxidase in chloroform
-
R. Kazandjian and A. Klibanov, “Regioselective oxidation of phenols catalyzed by polyphenol oxidase in chloroform,” J. Amer. Chem. Soc., vol. 107, pp. 5448–5450, 1985.
-
(1985)
J. Amer. Chem. Soc.
, vol.107
, pp. 5448-5450
-
-
Kazandjian, R.1
Klibanov, A.2
-
32
-
-
2142654932
-
Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites
-
T. M. Anh, S. V. Dzyadevych, M. C. Van, N. J. Renault, C. N. Duc, and J. Chovelon, “Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites,” Talanta, vol. 63, pp. 365–370, 2004.
-
(2004)
Talanta
, vol.63
, pp. 365-370
-
-
Anh, T.M.1
Dzyadevych, S.V.2
Van, M.C.3
Renault, N.J.4
Duc, C.N.5
Chovelon, J.6
-
33
-
-
0023522048
-
A microelectronic conductometric biosensor
-
P. Maynard, D. C. Cullen, R. S. Sethi, J. Brettle, and C. R. Lowe, /88.
-
L. D. Watson, P. Maynard, D. C. Cullen, R. S. Sethi, J. Brettle, and C. R. Lowe, “A microelectronic conductometric biosensor,” Biosensors, vol. 3, pp. 101–115, 1987/88.
-
(1987)
Biosensors
, vol.3
, pp. 101-115
-
-
Watson, L.D.1
-
34
-
-
32844469260
-
Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor
-
T. M. Anh, S. V. Dzyadevych, N. Prieur, C. N. Due, T. D. Pham, N. J. Renault, and J. Chovelon, “Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor,” Mater. Sci. Eng. C, vol. 26, pp. 453–456, 2006.
-
(2006)
Mater. Sci. Eng. C
, vol.26
, pp. 453-456
-
-
Anh, T.M.1
Dzyadevych, S.V.2
Prieur, N.3
Due, C.N.4
Pham, T.D.5
Renault, N.J.6
Chovelon, J.7
-
35
-
-
18544362035
-
Porous silicon as an entrapping matrix for the immobilization of urease
-
P. S. Chaudhari, A. Gokarna, M. Kulkarni, M. S. Karve, and S. V. Bhoraskar, “Porous silicon as an entrapping matrix for the immobilization of urease,” Sens. Actuators B, vol. 107, pp. 258–263, 2005.
-
(2005)
Sens. Actuators B
, vol.107
, pp. 258-263
-
-
Chaudhari, P.S.1
Gokarna, A.2
Kulkarni, M.3
Karve, M.S.4
Bhoraskar, S.V.5
-
36
-
-
0038540434
-
Characterization of tyrosinase and accompanying laccase from Amorphophallus companulatus
-
Biochem. Biophys.
-
P. Paranjpe, M. Karve, and S. Padhye, “Characterization of tyrosinase and accompanying laccase from Amorphophallus companulatus,” Indian J. Biochem. Biophys., vol. 40, pp. 40-45, 2003.
-
(2003)
Indian J.
, vol.40
, pp. 40-45
-
-
Paranjpe, P.1
Karve, M.2
Padhye, S.3
-
37
-
-
17744409087
-
TMAH/IPA anisotropic etching characteristics
-
A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, “TMAH/IPA anisotropic etching characteristics,” Sens. Actuators A., vol. 37-38, pp. 737–743, 1993.
-
(1993)
Sens. Actuators A.
, vol.37
, Issue.38
, pp. 737-743
-
-
Merlos, A.1
Acero, M.2
Bao, M.H.3
Bausells, J.4
Esteve, J.5
-
38
-
-
31144431833
-
Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film
-
S. Tembe, M. Karve, S. Inamdar, S. Haram, J. Melo, and S. F. D’Souza, “Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film,” Anal. Biochem., vol. 349, pp. 72–77, 2006.
-
(2006)
Anal. Biochem.
, vol.349
, pp. 72-77
-
-
Tembe, S.1
Karve, M.2
Inamdar, S.3
Haram, S.4
Melo, J.5
D’Souza, S.F.6
|