-
1
-
-
0022172171
-
Solar thermal energy storage
-
Springer Science & Business Media
-
[1] Garg, H.P., Mullick, S.C., Bhargava, A.K., Solar thermal energy storage. 1985, Springer Science & Business Media.
-
(1985)
-
-
Garg, H.P.1
Mullick, S.C.2
Bhargava, A.K.3
-
2
-
-
84874687008
-
Thermal energy storage system using phase change materials: constant heat source
-
[2] Reddy, M.R., Nallusamy, N., Prasad, A.B., Reddy, H.K., Thermal energy storage system using phase change materials: constant heat source. Therm Sci 16:4 (2012), 1097–1104.
-
(2012)
Therm Sci
, vol.16
, Issue.4
, pp. 1097-1104
-
-
Reddy, M.R.1
Nallusamy, N.2
Prasad, A.B.3
Reddy, H.K.4
-
3
-
-
84951013214
-
Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems
-
[3] Navarro, L., de Gracia, A., Colclough, S., Browne, M., McCormack, S.J., Griffiths, P., Cabeza, L.F., Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems. Renew Energy 88 (2016), 526–547.
-
(2016)
Renew Energy
, vol.88
, pp. 526-547
-
-
Navarro, L.1
de Gracia, A.2
Colclough, S.3
Browne, M.4
McCormack, S.J.5
Griffiths, P.6
Cabeza, L.F.7
-
4
-
-
70349446913
-
Heat and cold storage with PCM
-
Springer Berlin
-
[4] Mehling, H., Cabeza, L., Heat and cold storage with PCM. 2008, Springer, Berlin.
-
(2008)
-
-
Mehling, H.1
Cabeza, L.2
-
5
-
-
0029184589
-
Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point
-
[5] Choi, J., Kim, S., Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point. Energy 20:1 (1995), 13–25.
-
(1995)
Energy
, vol.20
, Issue.1
, pp. 13-25
-
-
Choi, J.1
Kim, S.2
-
6
-
-
72049117880
-
A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
-
[6] Agyenim, F., Hewitt, N., Eames, P., Smyth, M., A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:2 (2010), 615–628.
-
(2010)
Renew Sustain Energy Rev
, vol.14
, Issue.2
, pp. 615-628
-
-
Agyenim, F.1
Hewitt, N.2
Eames, P.3
Smyth, M.4
-
7
-
-
17744378162
-
Numerical analysis of a PCM thermal storage system with varying wall temperature
-
[7] Halawa, E., Bruno, F., Saman, W., Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Convers Manag 46:15 (2005), 2592–2604.
-
(2005)
Energy Convers Manag
, vol.46
, Issue.15
, pp. 2592-2604
-
-
Halawa, E.1
Bruno, F.2
Saman, W.3
-
8
-
-
0040524258
-
Evaluation and selection of energy storage systems for solar thermal applications
-
[8] Dincer, I., Evaluation and selection of energy storage systems for solar thermal applications. Int J Energy Res 23:12 (1999), 1017–1028.
-
(1999)
Int J Energy Res
, vol.23
, Issue.12
, pp. 1017-1028
-
-
Dincer, I.1
-
9
-
-
84882251594
-
High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques
-
[9] Cárdenas, B., León, N., High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renew Sustain Energy Rev 27 (2013), 724–737.
-
(2013)
Renew Sustain Energy Rev
, vol.27
, pp. 724-737
-
-
Cárdenas, B.1
León, N.2
-
10
-
-
84865490691
-
Selection of materials for high temperature latent heat energy storage
-
[10] Khare, S., Dell'Amico, M., Knight, C., McGarry, S., Selection of materials for high temperature latent heat energy storage. Sol Energy Mater Sol Cells 107 (2012), 20–27.
-
(2012)
Sol Energy Mater Sol Cells
, vol.107
, pp. 20-27
-
-
Khare, S.1
Dell'Amico, M.2
Knight, C.3
McGarry, S.4
-
11
-
-
0020599974
-
Low temperature latent heat thermal energy storage: heat storage materials
-
[11] Abhat, A., Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:4 (1983), 313–332.
-
(1983)
Sol Energy
, vol.30
, Issue.4
, pp. 313-332
-
-
Abhat, A.1
-
12
-
-
77951493539
-
An overview of phase change materials and their implication on power demand
-
(EPEC), IEEE, IEEE;
-
[12] Rousse DR, Ben Salah N, Lassue S. An overview of phase change materials and their implication on power demand. Electr. Power Energy Conf. (EPEC), 2009 IEEE, IEEE; 2009. p. 1–6.
-
(2009)
Electr. Power Energy Conf.
, pp. 1-6
-
-
Rousse, D.R.1
Ben Salah, N.2
Lassue, S.3
-
13
-
-
57649200354
-
Review on thermal energy storage with phase change materials and applications
-
[13] Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D., Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:2 (2009), 318–345.
-
(2009)
Renew Sustain Energy Rev
, vol.13
, Issue.2
, pp. 318-345
-
-
Sharma, A.1
Tyagi, V.V.2
Chen, C.R.3
Buddhi, D.4
-
14
-
-
40949115606
-
Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation
-
[14] Tamme, R., Bauer, T., Buschle, J., Laing, D., Müller-Steinhagen, H., Steinmann, W.-D., Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation. Int J Energy Res 32:3 (2008), 264–271.
-
(2008)
Int J Energy Res
, vol.32
, Issue.3
, pp. 264-271
-
-
Tamme, R.1
Bauer, T.2
Buschle, J.3
Laing, D.4
Müller-Steinhagen, H.5
Steinmann, W.-D.6
-
15
-
-
34250699990
-
Solar energy storage using phase change materials
-
[15] Kenisarin, M., Mahkamov, K., Solar energy storage using phase change materials. Renew Sustain Energy Rev 11:9 (2007), 1913–1965.
-
(2007)
Renew Sustain Energy Rev
, vol.11
, Issue.9
, pp. 1913-1965
-
-
Kenisarin, M.1
Mahkamov, K.2
-
16
-
-
84899444262
-
Phase change materials for thermal energy storage
-
[16] Pielichowska, K., Pielichowski, K., Phase change materials for thermal energy storage. Prog Mater Sci 65 (2014), 67–123.
-
(2014)
Prog Mater Sci
, vol.65
, pp. 67-123
-
-
Pielichowska, K.1
Pielichowski, K.2
-
17
-
-
0442312331
-
A review on phase change energy storage: materials and applications
-
[17] Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S., A review on phase change energy storage: materials and applications. Energy Convers Manag 45:9 (2004), 1597–1615.
-
(2004)
Energy Convers Manag
, vol.45
, Issue.9
, pp. 1597-1615
-
-
Farid, M.M.1
Khudhair, A.M.2
Razack, S.A.K.3
Al-Hallaj, S.4
-
18
-
-
84858251273
-
Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
-
[18] Liu, M., Saman, W., Bruno, F., Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16:4 (2012), 2118–2132.
-
(2012)
Renew Sustain Energy Rev
, vol.16
, Issue.4
, pp. 2118-2132
-
-
Liu, M.1
Saman, W.2
Bruno, F.3
-
19
-
-
50249164187
-
Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials
-
[19] Chen, C., Wang, L., Huang, Y., Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol Energy Mater Sol Cells 92:11 (2008), 1382–1387.
-
(2008)
Sol Energy Mater Sol Cells
, vol.92
, Issue.11
, pp. 1382-1387
-
-
Chen, C.1
Wang, L.2
Huang, Y.3
-
20
-
-
64049091092
-
Performance of phase change material boards under natural convection
-
[20] Liu, H., Awbi, H.B., Performance of phase change material boards under natural convection. Build Environ 44:9 (2009), 1788–1793.
-
(2009)
Build Environ
, vol.44
, Issue.9
, pp. 1788-1793
-
-
Liu, H.1
Awbi, H.B.2
-
21
-
-
84942089182
-
Using solid-liquid phase change materials (PCMs) in thermal energy storage systems
-
L.F. Cabeza Woodhead Publishing
-
[21] Bruno, F., Belusko, M., Liu, M., Tay, N.H.S., Using solid-liquid phase change materials (PCMs) in thermal energy storage systems. Cabeza, L.F., (eds.) Woodhead Publ. Ser. Energy, 2015, Woodhead Publishing, 201–246.
-
(2015)
Woodhead Publ. Ser. Energy
, pp. 201-246
-
-
Bruno, F.1
Belusko, M.2
Liu, M.3
Tay, N.H.S.4
-
22
-
-
0037289573
-
Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
-
[22] Zalba, B., Marı́n, J.M., Cabeza, L.F., Mehling, H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:3 (2003), 251–283.
-
(2003)
Appl Therm Eng
, vol.23
, Issue.3
, pp. 251-283
-
-
Zalba, B.1
Marı́n, J.M.2
Cabeza, L.F.3
Mehling, H.4
-
23
-
-
66149084471
-
Theoretical and experimental study of volumetric change rate during phase change process
-
[23] Kong, Q., Ma, J., Che, C., Theoretical and experimental study of volumetric change rate during phase change process. Int J Energy Res 33:5 (2009), 513–525.
-
(2009)
Int J Energy Res
, vol.33
, Issue.5
, pp. 513-525
-
-
Kong, Q.1
Ma, J.2
Che, C.3
-
24
-
-
74449092400
-
High-temperature phase change materials for thermal energy storage
-
[24] Kenisarin, M.M., High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14:3 (2010), 955–970.
-
(2010)
Renew Sustain Energy Rev
, vol.14
, Issue.3
, pp. 955-970
-
-
Kenisarin, M.M.1
-
25
-
-
84953715594
-
Advanced energy storage materials for building applications and their thermal performance characterization: a review
-
[25] Khadiran, T., Hussein, M.Z., Zainal, Z., Rusli, R., Advanced energy storage materials for building applications and their thermal performance characterization: a review. Renew Sustain Energy Rev 57 (2016), 916–928.
-
(2016)
Renew Sustain Energy Rev
, vol.57
, pp. 916-928
-
-
Khadiran, T.1
Hussein, M.Z.2
Zainal, Z.3
Rusli, R.4
-
26
-
-
0019043005
-
Thermal energy storage in salt hydrates
-
[26] Telkes, M., Thermal energy storage in salt hydrates. Sol Energy Mater 2:4 (1980), 381–393.
-
(1980)
Sol Energy Mater
, vol.2
, Issue.4
, pp. 381-393
-
-
Telkes, M.1
-
27
-
-
84901992373
-
A new method of application of hydrated salts on textiles to achieve thermoregulating properties
-
[27] Kazemi, Z., Mortazavi, S.M., A new method of application of hydrated salts on textiles to achieve thermoregulating properties. Thermochim Acta 589 (2014), 56–62.
-
(2014)
Thermochim Acta
, vol.589
, pp. 56-62
-
-
Kazemi, Z.1
Mortazavi, S.M.2
-
28
-
-
79959324852
-
Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC
-
[28] Hu, P., Lu, D.J., Fan, X.Y., Zhou, X., Chen, Z.S., Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC. Sol Energy Mater Sol Cells 95:9 (2011), 2645–2649.
-
(2011)
Sol Energy Mater Sol Cells
, vol.95
, Issue.9
, pp. 2645-2649
-
-
Hu, P.1
Lu, D.J.2
Fan, X.Y.3
Zhou, X.4
Chen, Z.S.5
-
29
-
-
84889572760
-
Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles
-
[29] Ramirez, B.G., Glorieux, C., Martinez, E.S., Cuautle, J.F., Tuning of thermal properties of sodium acetate trihydrate by blending with polymer and silver nanoparticles. Appl Therm Eng 62:2 (2014), 838–844.
-
(2014)
Appl Therm Eng
, vol.62
, Issue.2
, pp. 838-844
-
-
Ramirez, B.G.1
Glorieux, C.2
Martinez, E.S.3
Cuautle, J.F.4
-
30
-
-
84866528120
-
Study on the performance of nanoparticles as nucleating agents for sodium acetate trihydrate
-
[30] Lu, D.J., Hu, P., Zhao, B.B., Liu, Y., Chen, Z.S., Study on the performance of nanoparticles as nucleating agents for sodium acetate trihydrate. J Eng Thermophys 33:8 (2012), 1279–1282.
-
(2012)
J Eng Thermophys
, vol.33
, Issue.8
, pp. 1279-1282
-
-
Lu, D.J.1
Hu, P.2
Zhao, B.B.3
Liu, Y.4
Chen, Z.S.5
-
31
-
-
0025470495
-
Fundamental research on the supercooling phenomenon on heat transfer surfaces—investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water
-
[31] Akio, S., Yoshio, U., Seiji, O., Kazuyuki, M., Atsushi, T., Fundamental research on the supercooling phenomenon on heat transfer surfaces—investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water. Int J Heat Mass Transf 33:8 (1990), 1697–1709.
-
(1990)
Int J Heat Mass Transf
, vol.33
, Issue.8
, pp. 1697-1709
-
-
Akio, S.1
Yoshio, U.2
Seiji, O.3
Kazuyuki, M.4
Atsushi, T.5
-
32
-
-
84868697570
-
Thermal stability of phase change materials used in latent heat energy storage systems: a review
-
[32] Rathod, M.K., Banerjee, J., Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev 18 (2013), 246–258.
-
(2013)
Renew Sustain Energy Rev
, vol.18
, pp. 246-258
-
-
Rathod, M.K.1
Banerjee, J.2
-
36
-
-
74449091839
-
Designing and investigations of salt systems for solar energy utilization
-
Util Sun Other Radiat Sources Mater Res Kiev: Nauk Dumka;
-
[36] Trunin AS. Designing and investigations of salt systems for solar energy utilization. Util Sun Other Radiat Sources Mater Res Kiev: Nauk Dumka; 1983. p. 228–38.
-
(1983)
, pp. 228-238
-
-
Trunin, A.S.1
-
37
-
-
85152053551
-
-
Latent heat thermal energy storage systems above 450.8 C. Proc. 12th Intersoc. energy Convers. Eng. Conf. Washington, DC, August
-
[37] Maranowski LG, Maru HC. Latent heat thermal energy storage systems above 450.8 C. Proc. 12th Intersoc. energy Convers. Eng. Conf. Washington, DC, August pp. 55–66; 1977.
-
(1977)
, pp. 55-66
-
-
Maranowski, L.G.1
Maru, H.C.2
-
38
-
-
85152061788
-
-
Molten salt thermal energy storage systems. Final Rep Inst Gas Technol Chicago, IL;
-
[38] Maru HC, Dullea JF, Kardas A, Paul L, Marianowski LG, Ong E. et al. Molten salt thermal energy storage systems. Final Rep Inst Gas Technol Chicago, IL; 1978.
-
(1978)
-
-
Maru, H.C.1
Dullea, J.F.2
Kardas, A.3
Paul, L.4
Marianowski, L.G.5
Ong, E.6
-
39
-
-
85152029733
-
-
Molten salts latent thermal storage using NaOH-based eutectics. 23rd Intersoc. energy Convers. Eng. Conf.;
-
[39] Abe Y, Takahashi Y, Kanari K, Tanaka K, Sakamoto R, Kamimoto M. Molten salts latent thermal storage using NaOH-based eutectics. 23rd Intersoc. energy Convers. Eng. Conf.; 1988.
-
(1988)
-
-
Abe, Y.1
Takahashi, Y.2
Kanari, K.3
Tanaka, K.4
Sakamoto, R.5
Kamimoto, M.6
-
40
-
-
0346088398
-
Development of a molten-salt thermocline thermal storage system for parabolic trough plants
-
[40] Pacheco, J.E., Showalter, S.K., Kolb, W.J., Development of a molten-salt thermocline thermal storage system for parabolic trough plants. J Sol Energy Eng 124:2 (2002), 153–159.
-
(2002)
J Sol Energy Eng
, vol.124
, Issue.2
, pp. 153-159
-
-
Pacheco, J.E.1
Showalter, S.K.2
Kolb, W.J.3
-
41
-
-
84910097481
-
Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption
-
[41] López-Sabirón, A.M., Royo, P., Ferreira, V.J., Aranda-Usón, A., Ferreira, G., Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption. Appl Energy 135 (2014), 616–624.
-
(2014)
Appl Energy
, vol.135
, pp. 616-624
-
-
López-Sabirón, A.M.1
Royo, P.2
Ferreira, V.J.3
Aranda-Usón, A.4
Ferreira, G.5
-
42
-
-
79952571822
-
Advanced High Temperature Latent Heat Storage System—Design and Test Results.
-
[42] Laing D, Bauer T, Steinmann WD, Lehmann D. Advanced High Temperature Latent Heat Storage System—Design and Test Results. Proc. 11th Int. Conf. Therm. Energy Storage, Effstock; 2009. p. 14–7.
-
(2009)
Proc. 11th Int. Conf. Therm. Energy Storage, Effstock
, pp. 14-17
-
-
Laing, D.1
Bauer, T.2
Steinmann, W.D.3
Lehmann, D.4
-
43
-
-
84905672765
-
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage
-
[43] Ge, Z., Ye, F., Cao, H., Leng, G., Qin, Y., Ding, Y., Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage. Particuology 15 (2014), 77–81.
-
(2014)
Particuology
, vol.15
, pp. 77-81
-
-
Ge, Z.1
Ye, F.2
Cao, H.3
Leng, G.4
Qin, Y.5
Ding, Y.6
-
44
-
-
84875949097
-
LiNO3–NaNO3–KNO3 salt for thermal energy storage: thermal stability evaluation in different atmospheres
-
[44] Olivares, R.I., Edwards, W., LiNO3–NaNO3–KNO3 salt for thermal energy storage: thermal stability evaluation in different atmospheres. Thermochim Acta 560 (2013), 34–42.
-
(2013)
Thermochim Acta
, vol.560
, pp. 34-42
-
-
Olivares, R.I.1
Edwards, W.2
-
45
-
-
0020190653
-
Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities
-
[45] Rogers, D.J., Janz, G.J., Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities. J Chem Eng Data 27:4 (1982), 424–428.
-
(1982)
J Chem Eng Data
, vol.27
, Issue.4
, pp. 424-428
-
-
Rogers, D.J.1
Janz, G.J.2
-
46
-
-
4344624124
-
The NaNO3/KNO3 system: the position of the solidus and sub-solidus
-
[46] Berg, R.W., Kerridge, D.H., The NaNO3/KNO3 system: the position of the solidus and sub-solidus. Dalt Trans 15 (2004), 2224–2229.
-
(2004)
Dalt Trans
, vol.15
, pp. 2224-2229
-
-
Berg, R.W.1
Kerridge, D.H.2
-
47
-
-
0142195930
-
Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system
-
[47] Zhang, X., Tian, J., Xu, K., Gao, Y., Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system. J Phase Equilibria 24:5 (2003), 441–446.
-
(2003)
J Phase Equilibria
, vol.24
, Issue.5
, pp. 441-446
-
-
Zhang, X.1
Tian, J.2
Xu, K.3
Gao, Y.4
-
48
-
-
0033211314
-
Thermodynamic analysis of the CsNO3-KNO3-NaNo3 system
-
[48] Jriri, T., Rogez, J., Mathieu, J.C., Ansara, I., Thermodynamic analysis of the CsNO3-KNO3-NaNo3 system. J Phase Equilibria 20:5 (1999), 515–525.
-
(1999)
J Phase Equilibria
, vol.20
, Issue.5
, pp. 515-525
-
-
Jriri, T.1
Rogez, J.2
Mathieu, J.C.3
Ansara, I.4
-
49
-
-
0021523547
-
Application of simultaneous thermomicroscopy/DSC to the study of phase diagrams
-
[49] Wiedemann, H.G., Bayer, G., Application of simultaneous thermomicroscopy/DSC to the study of phase diagrams. J Therm Anal Calorim 30 (1985), 1273–1281.
-
(1985)
J Therm Anal Calorim
, vol.30
, pp. 1273-1281
-
-
Wiedemann, H.G.1
Bayer, G.2
-
50
-
-
84876778017
-
An experimental study of a non-eutectic mixture of KNO3 and NaNO3 with a melting range for thermal energy storage
-
[50] Martin, C., Bauer, T., Müller-Steinhagen, H., An experimental study of a non-eutectic mixture of KNO3 and NaNO3 with a melting range for thermal energy storage. Appl Therm Eng 56:1 (2013), 159–166.
-
(2013)
Appl Therm Eng
, vol.56
, Issue.1
, pp. 159-166
-
-
Martin, C.1
Bauer, T.2
Müller-Steinhagen, H.3
-
51
-
-
84926417672
-
Eutectic compound (KNO3/NaNO3: pcm) quasi-encapsulated into SiC-honeycomb for suppressing natural convection of melted PCM
-
[51] Li, Y., Guo, B., Huang, G., Shu, P., Kiriki, H., Kubo, S., Ohno, K., Kawai, T., Eutectic compound (KNO3/NaNO3: pcm) quasi-encapsulated into SiC-honeycomb for suppressing natural convection of melted PCM. Int J Energy Res 39:6 (2015), 789–804.
-
(2015)
Int J Energy Res
, vol.39
, Issue.6
, pp. 789-804
-
-
Li, Y.1
Guo, B.2
Huang, G.3
Shu, P.4
Kiriki, H.5
Kubo, S.6
Ohno, K.7
Kawai, T.8
-
52
-
-
84863262647
-
A review of intercalation composite phase change material: preparation, structure and properties
-
[52] Li, M., Wu, Z., A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16:4 (2012), 2094–2101.
-
(2012)
Renew Sustain Energy Rev
, vol.16
, Issue.4
, pp. 2094-2101
-
-
Li, M.1
Wu, Z.2
-
53
-
-
84907487284
-
Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor
-
[53] He, F., Wang, X., Wu, D., Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renew Energy 74 (2015), 689–698.
-
(2015)
Renew Energy
, vol.74
, pp. 689-698
-
-
He, F.1
Wang, X.2
Wu, D.3
-
54
-
-
78649820764
-
Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials
-
[54] Fang, G., Li, H., Chen, Z., Liu, X., Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy 35:12 (2010), 4622–4626.
-
(2010)
Energy
, vol.35
, Issue.12
, pp. 4622-4626
-
-
Fang, G.1
Li, H.2
Chen, Z.3
Liu, X.4
-
55
-
-
84857012304
-
Corrosion effects between molten salts and thermal storage material for concentrated solar power plants
-
[55] Guillot, S., Faik, A., Rakhmatullin, A., Lambert, J., Veron, E., Echegut, P., Bessada, C., Calvet, N., Py, X., Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl Energy 94 (2012), 174–181.
-
(2012)
Appl Energy
, vol.94
, pp. 174-181
-
-
Guillot, S.1
Faik, A.2
Rakhmatullin, A.3
Lambert, J.4
Veron, E.5
Echegut, P.6
Bessada, C.7
Calvet, N.8
Py, X.9
-
56
-
-
77955267824
-
KNO3/NaNO3–Graphite materials for thermal energy storage at high temperature: part II. Phase transition properties
-
[56] Lopez, J., Acem, Z., Del Barrio, E.P., KNO3/NaNO3–Graphite materials for thermal energy storage at high temperature: part II. Phase transition properties. Appl Therm Eng 30:13 (2010), 1586–1593.
-
(2010)
Appl Therm Eng
, vol.30
, Issue.13
, pp. 1586-1593
-
-
Lopez, J.1
Acem, Z.2
Del Barrio, E.P.3
-
57
-
-
84901247427
-
Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material
-
[57] Xiao, J., Huang, J., Zhu, P., Wang, C., Li, X., Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material. Thermochim Acta 587 (2014), 52–58.
-
(2014)
Thermochim Acta
, vol.587
, pp. 52-58
-
-
Xiao, J.1
Huang, J.2
Zhu, P.3
Wang, C.4
Li, X.5
-
58
-
-
34248360304
-
Cascaded latent heat storage for parabolic trough solar power plants
-
[58] Michels, H., Pitz-Paal, R., Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 81:6 (2007), 829–837.
-
(2007)
Sol Energy
, vol.81
, Issue.6
, pp. 829-837
-
-
Michels, H.1
Pitz-Paal, R.2
-
59
-
-
84902975230
-
Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite
-
[59] Zhong, L., Zhang, X., Luan, Y., Wang, G., Feng, Y., Feng, D., Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite. Sol Energy 107 (2014), 63–73.
-
(2014)
Sol Energy
, vol.107
, pp. 63-73
-
-
Zhong, L.1
Zhang, X.2
Luan, Y.3
Wang, G.4
Feng, Y.5
Feng, D.6
-
60
-
-
84904216457
-
-
Thermal storage in metals. Shar. Sun Sol. Technol. Seventies
-
[60] Birchenall CE, Telkes M. Thermal storage in metals. Shar. Sun Sol. Technol. Seventies, Volume 8 1976 (Vol. 8, p. 138–54).
-
(1976)
, vol.8
, pp. 138-154
-
-
Birchenall, C.E.1
Telkes, M.2
-
61
-
-
0022031224
-
New eutectic alloys and their heats of transformation
-
[61] Farkas, D., Birchenall, C.E., New eutectic alloys and their heats of transformation. Met Trans A 16:3 (1985), 323–328.
-
(1985)
Met Trans A
, vol.16
, Issue.3
, pp. 323-328
-
-
Farkas, D.1
Birchenall, C.E.2
-
62
-
-
84873658421
-
Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area
-
[62] Ge, H., Li, H., Mei, S., Liu, J., Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev 21 (2013), 331–346.
-
(2013)
Renew Sustain Energy Rev
, vol.21
, pp. 331-346
-
-
Ge, H.1
Li, H.2
Mei, S.3
Liu, J.4
-
63
-
-
0032200994
-
Use of low fusing alloy in dentistry
-
[63] Wee, A.G., Schneider, R.L., Aquilino, S.A., Use of low fusing alloy in dentistry. J Prosthet Dent 80:5 (1998), 540–545.
-
(1998)
J Prosthet Dent
, vol.80
, Issue.5
, pp. 540-545
-
-
Wee, A.G.1
Schneider, R.L.2
Aquilino, S.A.3
-
64
-
-
79953164742
-
Revolutionizing heat transport enhancement with liquid metals: proposal of a new industry of water-free heat exchangers
-
[64] Li, H., Liu, J., Revolutionizing heat transport enhancement with liquid metals: proposal of a new industry of water-free heat exchangers. Front Energy 5:1 (2011), 20–42.
-
(2011)
Front Energy
, vol.5
, Issue.1
, pp. 20-42
-
-
Li, H.1
Liu, J.2
-
65
-
-
84902258031
-
Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material
-
[65] Kotzé, J.P., von Backström, T.W., Erens, P.J., Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material. Energy Proc 49 (2014), 860–869.
-
(2014)
Energy Proc
, vol.49
, pp. 860-869
-
-
Kotzé, J.P.1
von Backström, T.W.2
Erens, P.J.3
-
66
-
-
84878876430
-
High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids
-
[66] Kotzé, J.P., von Backström, T.W., Erens, P.J., High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids. J Sol Energy Eng, 135(3), 2013, 035001.
-
(2013)
J Sol Energy Eng
, vol.135
, Issue.3
, pp. 035001
-
-
Kotzé, J.P.1
von Backström, T.W.2
Erens, P.J.3
-
67
-
-
84946760986
-
Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials
-
[67] Fukahori, R., Nomura, T., Zhu, C., Sheng, N., Okinaka, N., Akiyama, T., Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl Energy 163 (2016), 1–8.
-
(2016)
Appl Energy
, vol.163
, pp. 1-8
-
-
Fukahori, R.1
Nomura, T.2
Zhu, C.3
Sheng, N.4
Okinaka, N.5
Akiyama, T.6
-
68
-
-
0034174173
-
Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead–bismuth eutectic spallation targets as a neutron source
-
[68] Park, J.J., Butt, D.P., Beard, C.A., Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead–bismuth eutectic spallation targets as a neutron source. Nucl Eng Des 196:3 (2000), 315–325.
-
(2000)
Nucl Eng Des
, vol.196
, Issue.3
, pp. 315-325
-
-
Park, J.J.1
Butt, D.P.2
Beard, C.A.3
-
69
-
-
84872055692
-
Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications
-
[69] Sugo, H., Kisi, E., Cuskelly, D., Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications. Appl Therm Eng 51:1 (2013), 1345–1350.
-
(2013)
Appl Therm Eng
, vol.51
, Issue.1
, pp. 1345-1350
-
-
Sugo, H.1
Kisi, E.2
Cuskelly, D.3
-
70
-
-
50949089642
-
Heat transfer characteristics of thermal energy storage system using PCM capsules: a review
-
[70] Regin, A.F., Solanki, S.C., Saini, J.S., Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 12:9 (2008), 2438–2458.
-
(2008)
Renew Sustain Energy Rev
, vol.12
, Issue.9
, pp. 2438-2458
-
-
Regin, A.F.1
Solanki, S.C.2
Saini, J.S.3
-
71
-
-
84946735334
-
Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method
-
[71] Ma, B., Li, J., Xu, Z., Peng, Z., Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method. Appl Energy 132 (2014), 568–574.
-
(2014)
Appl Energy
, vol.132
, pp. 568-574
-
-
Ma, B.1
Li, J.2
Xu, Z.3
Peng, Z.4
-
72
-
-
84902002250
-
Encapsulation of copper-based phase change materials for high temperature thermal energy storage
-
[72] Zhang, G., Li, J., Chen, Y., Xiang, H., Ma, B., Xu, Z., Ma, X., Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol Energy Mater Sol Cells 128 (2014), 131–137.
-
(2014)
Sol Energy Mater Sol Cells
, vol.128
, pp. 131-137
-
-
Zhang, G.1
Li, J.2
Chen, Y.3
Xiang, H.4
Ma, B.5
Xu, Z.6
Ma, X.7
-
73
-
-
84926148018
-
Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications
-
[73] Liu, M., Gomez, J.C., Turchi, C.S., Tay, N.H.S., Saman, W., Bruno, F., Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications. Sol Energy Mater Sol Cells 139 (2015), 81–87.
-
(2015)
Sol Energy Mater Sol Cells
, vol.139
, pp. 81-87
-
-
Liu, M.1
Gomez, J.C.2
Turchi, C.S.3
Tay, N.H.S.4
Saman, W.5
Bruno, F.6
-
74
-
-
70349530653
-
State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization
-
[74] Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., Cabeza, L.F., State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew Sustain Energy Rev 14:1 (2010), 31–55.
-
(2010)
Renew Sustain Energy Rev
, vol.14
, Issue.1
, pp. 31-55
-
-
Gil, A.1
Medrano, M.2
Martorell, I.3
Lázaro, A.4
Dolado, P.5
Zalba, B.6
Cabeza, L.F.7
-
75
-
-
84949238743
-
Salt hydrates as latent heat storage materials: thermophysical properties and costs
-
[75] Kenisarin, M., Mahkamov, K., Salt hydrates as latent heat storage materials: thermophysical properties and costs. Sol Energy Mater Sol Cells 145 (2016), 255–286.
-
(2016)
Sol Energy Mater Sol Cells
, vol.145
, pp. 255-286
-
-
Kenisarin, M.1
Mahkamov, K.2
-
76
-
-
84888393813
-
Thermal property measurement and heat storage analysis of LiNO3/KCl–expanded graphite composite phase change material
-
[76] Huang, Z., Gao, X., Xu, T., Fang, Y., Zhang, Z., Thermal property measurement and heat storage analysis of LiNO3/KCl–expanded graphite composite phase change material. Appl Energy 115 (2014), 265–271.
-
(2014)
Appl Energy
, vol.115
, pp. 265-271
-
-
Huang, Z.1
Gao, X.2
Xu, T.3
Fang, Y.4
Zhang, Z.5
-
77
-
-
84905645996
-
Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage
-
[77] Ye, F., Ge, Z., Ding, Y., Yang, J., Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology 15 (2014), 56–60.
-
(2014)
Particuology
, vol.15
, pp. 56-60
-
-
Ye, F.1
Ge, Z.2
Ding, Y.3
Yang, J.4
-
78
-
-
84904189069
-
Thermophysical characterization of Mg–51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications
-
[78] Blanco-Rodríguez, P., Rodríguez-Aseguinolaza, J., Risueño, E., Tello, M., Thermophysical characterization of Mg–51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications. Energy 72 (2014), 414–420.
-
(2014)
Energy
, vol.72
, pp. 414-420
-
-
Blanco-Rodríguez, P.1
Rodríguez-Aseguinolaza, J.2
Risueño, E.3
Tello, M.4
-
79
-
-
0035946241
-
A study on latent heat storage exchangers with the high‐temperature phase‐change material
-
[79] He, Q., Zhang, W., A study on latent heat storage exchangers with the high‐temperature phase‐change material. Int J Energy Res 25:4 (2001), 331–341.
-
(2001)
Int J Energy Res
, vol.25
, Issue.4
, pp. 331-341
-
-
He, Q.1
Zhang, W.2
-
80
-
-
0038813701
-
Assessment of a molten salt heat transfer fluid in a parabolic trough solar field
-
[80] Kearney, D., Herrmann, U., Nava, P., Kelly, B., Mahoney, R., Pacheco, J., Cable, R., Potrovitza, N., Blake, D., Price, H., Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 125:2 (2003), 170–176.
-
(2003)
J Sol Energy Eng
, vol.125
, Issue.2
, pp. 170-176
-
-
Kearney, D.1
Herrmann, U.2
Nava, P.3
Kelly, B.4
Mahoney, R.5
Pacheco, J.6
Cable, R.7
Potrovitza, N.8
Blake, D.9
Price, H.10
-
81
-
-
84903035675
-
Smithells metals reference book
-
Butterworth-Heinemann
-
[81] Gale, W.F., Totemeier, T.C., Smithells metals reference book. 2003, Butterworth-Heinemann.
-
(2003)
-
-
Gale, W.F.1
Totemeier, T.C.2
-
82
-
-
33644869506
-
Manual of electroplating technology
-
China Machine Press Beijing
-
[82] Zeng, H.L., Wu, Z.D., Chen, J.W., Wu, P.R., Qin, Y.W., Manual of electroplating technology. 1997, China Machine Press, Beijing.
-
(1997)
-
-
Zeng, H.L.1
Wu, Z.D.2
Chen, J.W.3
Wu, P.R.4
Qin, Y.W.5
-
83
-
-
0003845063
-
Magnesium and magnesium alloys—ASM specialty handbook, ASM International
-
The Materials Information Society Ohio
-
[83] Avedesian, M.M., Baker, H., Magnesium and magnesium alloys—ASM specialty handbook, ASM International. 1999, The Materials Information Society, Ohio, 52.
-
(1999)
, pp. 52
-
-
Avedesian, M.M.1
Baker, H.2
-
84
-
-
33947415055
-
Thermal expansion of aluminum and some aluminum alloys
-
[84] Hidnert, P., Krider, H.S., Thermal expansion of aluminum and some aluminum alloys. J Res Natl Bur Stand 48:3 (1952), 209–220.
-
(1952)
J Res Natl Bur Stand
, vol.48
, Issue.3
, pp. 209-220
-
-
Hidnert, P.1
Krider, H.S.2
-
85
-
-
0000742580
-
IX. The thermal expansion of the crystal lattices of silver, platinum, and zinc
-
[85] Owen, E.A., Yates, E.L., IX. The thermal expansion of the crystal lattices of silver, platinum, and zinc. London, Edinburgh, Dublin Philos Mag J Sci 17:110 (1934), 113–131.
-
(1934)
London, Edinburgh, Dublin Philos Mag J Sci
, vol.17
, Issue.110
, pp. 113-131
-
-
Owen, E.A.1
Yates, E.L.2
-
86
-
-
84921024431
-
Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties
-
[86] Cabeza, L.F., Barreneche, C., Martorell, I., Miró, L., Sari-Bey, S., Fois, M., Paksoy, H.O., Sahan, N., Weber, R., Constantinescu, M., Anghel, E.M., Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renew Sustain Energy Rev 43 (2015), 1399–1414.
-
(2015)
Renew Sustain Energy Rev
, vol.43
, pp. 1399-1414
-
-
Cabeza, L.F.1
Barreneche, C.2
Martorell, I.3
Miró, L.4
Sari-Bey, S.5
Fois, M.6
Paksoy, H.O.7
Sahan, N.8
Weber, R.9
Constantinescu, M.10
Anghel, E.M.11
-
87
-
-
84949989809
-
Characterization of phase change material systems using a thermal test device
-
[87] Jordà, X., Esarte, J., Perpiñà, X., Vellvehi, M., Argandoña, G., Aresti, M., Characterization of phase change material systems using a thermal test device. Microelectron J 46:12 (2015), 1195–1201.
-
(2015)
Microelectron J
, vol.46
, Issue.12
, pp. 1195-1201
-
-
Jordà, X.1
Esarte, J.2
Perpiñà, X.3
Vellvehi, M.4
Argandoña, G.5
Aresti, M.6
-
88
-
-
84940092751
-
A new experimental device and inverse method to characterize thermal properties of composite phase change materials
-
[88] Didier, G., Mustapha, K., AlMaadeed, M.A., Krupa, I., A new experimental device and inverse method to characterize thermal properties of composite phase change materials. Compos Struct 133 (2015), 1149–1159.
-
(2015)
Compos Struct
, vol.133
, pp. 1149-1159
-
-
Didier, G.1
Mustapha, K.2
AlMaadeed, M.A.3
Krupa, I.4
-
89
-
-
33744455350
-
Springer handbook of materials measurement methods
-
Springer Science & Business Media
-
[89] Smith, L.R., Czichos, H., Saito, T., Smith, L., Springer handbook of materials measurement methods. 2006, Springer Science & Business Media.
-
(2006)
-
-
Smith, L.R.1
Czichos, H.2
Saito, T.3
Smith, L.4
-
90
-
-
49649084688
-
Thermal cycling test of few selected inorganic and organic phase change materials
-
[90] Shukla, A., Buddhi, D., Sawhney, R.L., Thermal cycling test of few selected inorganic and organic phase change materials. Renew Energy 33:12 (2008), 2606–2614.
-
(2008)
Renew Energy
, vol.33
, Issue.12
, pp. 2606-2614
-
-
Shukla, A.1
Buddhi, D.2
Sawhney, R.L.3
-
91
-
-
85013862628
-
Corrosion and corrosion protection handbook
-
[91] Reitz, W., Corrosion and corrosion protection handbook. Mater Manuf Process 8:2 (1993), 269–270.
-
(1993)
Mater Manuf Process
, vol.8
, Issue.2
, pp. 269-270
-
-
Reitz, W.1
-
92
-
-
33646765790
-
Corrosive effects of salt hydrate phase change materials used with aluminium and copper
-
[92] Farrell, A.J., Norton, B., Kennedy, D.M., Corrosive effects of salt hydrate phase change materials used with aluminium and copper. J Mater Process Technol 175:1 (2006), 198–205.
-
(2006)
J Mater Process Technol
, vol.175
, Issue.1
, pp. 198-205
-
-
Farrell, A.J.1
Norton, B.2
Kennedy, D.M.3
-
93
-
-
85151963558
-
-
Corrosion: Metal/environment reactions. Butterworth;
-
[93] Shreir LL, Jarman RA, Burstein GT. Corrosion: Metal/environment reactions. Butterworth; 1994.
-
(1994)
-
-
Shreir, L.L.1
Jarman, R.A.2
Burstein, G.T.3
-
94
-
-
0023839633
-
Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance
-
[94] Porisini, F., Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol Energy 41:2 (1988), 193–197.
-
(1988)
Sol Energy
, vol.41
, Issue.2
, pp. 193-197
-
-
Porisini, F.1
-
95
-
-
33746585353
-
Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range
-
[95] Cabeza, L.F., Illa, J., Roca, J., Badia, F., Mehling, H., Hiebler, S., Ziegler, F., Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range. Mater Corros 52:2 (2001), 140–146.
-
(2001)
Mater Corros
, vol.52
, Issue.2
, pp. 140-146
-
-
Cabeza, L.F.1
Illa, J.2
Roca, J.3
Badia, F.4
Mehling, H.5
Hiebler, S.6
Ziegler, F.7
-
96
-
-
0035492996
-
Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range
-
[96] Cabeza, L.F., Illa, J., Roca, J., Badia, F., Mehling, H., Hiebler, S., Ziegler, F., Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range. Mater Corros 52:10 (2001), 748–754.
-
(2001)
Mater Corros
, vol.52
, Issue.10
, pp. 748-754
-
-
Cabeza, L.F.1
Illa, J.2
Roca, J.3
Badia, F.4
Mehling, H.5
Hiebler, S.6
Ziegler, F.7
-
97
-
-
0036953880
-
Immersion corrosion tests on metal salt hydrate pairs used for latent heat storage in the 48 to 58 °C temperature range
-
[97] Cabeza, L., Roca, J., Nogués, M., Mehling, H., Hiebler, S., Immersion corrosion tests on metal salt hydrate pairs used for latent heat storage in the 48 to 58 °C temperature range. Mater Corros 53:12 (2002), 902–907.
-
(2002)
Mater Corros
, vol.53
, Issue.12
, pp. 902-907
-
-
Cabeza, L.1
Roca, J.2
Nogués, M.3
Mehling, H.4
Hiebler, S.5
-
98
-
-
84879321835
-
Corrosion of metal and polymer containers for use in PCM cold storage
-
[98] Oró, E., Miró, L., Barreneche, C., Martorell, I., Farid, M.M., Cabeza, L.F., Corrosion of metal and polymer containers for use in PCM cold storage. Appl Energy 109 (2013), 449–453.
-
(2013)
Appl Energy
, vol.109
, pp. 449-453
-
-
Oró, E.1
Miró, L.2
Barreneche, C.3
Martorell, I.4
Farid, M.M.5
Cabeza, L.F.6
-
99
-
-
84898771515
-
Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications
-
[99] Moreno, P., Miró, L., Solé, A., Barreneche, C., Solé, C., Martorell, I., Cabeza, L.F., Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Appl Energy 125 (2014), 238–245.
-
(2014)
Appl Energy
, vol.125
, pp. 238-245
-
-
Moreno, P.1
Miró, L.2
Solé, A.3
Barreneche, C.4
Solé, C.5
Martorell, I.6
Cabeza, L.F.7
-
100
-
-
84955509707
-
Sodium nitrate thermal behavior in latent heat thermal energy storage: a study of the impact of sodium nitrite on melting temperature and enthalpy
-
[100] Lomonaco, A., Haillot, D., Pernot, E., Franquet, E., Bédécarrats, J.P., Sodium nitrate thermal behavior in latent heat thermal energy storage: a study of the impact of sodium nitrite on melting temperature and enthalpy. Sol Energy Mater Sol Cells 149 (2016), 81–87.
-
(2016)
Sol Energy Mater Sol Cells
, vol.149
, pp. 81-87
-
-
Lomonaco, A.1
Haillot, D.2
Pernot, E.3
Franquet, E.4
Bédécarrats, J.P.5
-
101
-
-
0023211199
-
Durability of latent heat storage tube-sheets
-
[101] Ting, K.C., Giannakakos, P.N., Gilbert, S.G., Durability of latent heat storage tube-sheets. Sol Energy 39:2 (1987), 79–85.
-
(1987)
Sol Energy
, vol.39
, Issue.2
, pp. 79-85
-
-
Ting, K.C.1
Giannakakos, P.N.2
Gilbert, S.G.3
-
102
-
-
0024144187
-
Mixtures of calcium chloride hexahydrate with some salt hydrates or anhydrous salts as latent heat storage materials
-
[102] Kimura, H., Kai, J., Mixtures of calcium chloride hexahydrate with some salt hydrates or anhydrous salts as latent heat storage materials. Energy Convers Manag 28:3 (1988), 197–200.
-
(1988)
Energy Convers Manag
, vol.28
, Issue.3
, pp. 197-200
-
-
Kimura, H.1
Kai, J.2
-
103
-
-
0002194695
-
Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications
-
[103] Jotshi, C.K., Hsieh, C.K., Goswami, D.Y., Klausner, J.F., Srinivasan, N., Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications. J Sol Energy Eng 120:1 (1998), 20–24.
-
(1998)
J Sol Energy Eng
, vol.120
, Issue.1
, pp. 20-24
-
-
Jotshi, C.K.1
Hsieh, C.K.2
Goswami, D.Y.3
Klausner, J.F.4
Srinivasan, N.5
-
104
-
-
0021605135
-
Heat storage capacity of sodium acetate trihydrate during thermal cycling
-
[104] Wada, T., Yamamoto, R., Matsuo, Y., Heat storage capacity of sodium acetate trihydrate during thermal cycling. Sol Energy 33:3–4 (1984), 373–375.
-
(1984)
Sol Energy
, vol.33
, Issue.3-4
, pp. 373-375
-
-
Wada, T.1
Yamamoto, R.2
Matsuo, Y.3
-
105
-
-
0017321763
-
Thermal energy storage for solar power plants
-
11th Intersoc. Energy Convers. Eng. Conf.
-
[105] Venkatesetty HV, LeFrois RT. Thermal energy storage for solar power plants. 11th Intersoc. Energy Convers. Eng. Conf. 1976; (Vol. 1, p. 606–612).
-
(1976)
, vol.1
, pp. 606-612
-
-
Venkatesetty, H.V.1
LeFrois, R.T.2
-
106
-
-
84930935988
-
Review on the methodology used in thermal stability characterization of phase change materials
-
[106] Ferrer, G., Solé, A., Barreneche, C., Martorell, I., Cabeza, L.F., Review on the methodology used in thermal stability characterization of phase change materials. Renew Sustain Energy Rev 50 (2015), 665–685.
-
(2015)
Renew Sustain Energy Rev
, vol.50
, pp. 665-685
-
-
Ferrer, G.1
Solé, A.2
Barreneche, C.3
Martorell, I.4
Cabeza, L.F.5
-
107
-
-
84956571733
-
Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage
-
[107] Jacob, R., Bruno, F., Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energy Rev 48 (2015), 79–87.
-
(2015)
Renew Sustain Energy Rev
, vol.48
, pp. 79-87
-
-
Jacob, R.1
Bruno, F.2
-
108
-
-
84892715875
-
A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
-
[108] Jamekhorshid, A., Sadrameli, S.M., Farid, M., A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31 (2014), 531–542.
-
(2014)
Renew Sustain Energy Rev
, vol.31
, pp. 531-542
-
-
Jamekhorshid, A.1
Sadrameli, S.M.2
Farid, M.3
-
109
-
-
84887596127
-
The effect of microencapsulated phase-change material on the compressive strength of structural concrete
-
Coll Publ
-
[109] Norvell, C., Sailor, D.J., Dusicka, P., The effect of microencapsulated phase-change material on the compressive strength of structural concrete. 8, 2013, Coll Publ, 116–124.
-
(2013)
, vol.8
, pp. 116-124
-
-
Norvell, C.1
Sailor, D.J.2
Dusicka, P.3
-
110
-
-
84864512908
-
A review on effect of phase change material encapsulation on the thermal performance of a system
-
[110] Salunkhe, P.B., Shembekar, P.S., A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev 16:8 (2012), 5603–5616.
-
(2012)
Renew Sustain Energy Rev
, vol.16
, Issue.8
, pp. 5603-5616
-
-
Salunkhe, P.B.1
Shembekar, P.S.2
-
111
-
-
84943773118
-
Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review
-
[111] Giro-Paloma, J., Martínez, M., Cabeza, L.F., Fernández, A.I., Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sustain Energy Rev 53 (2016), 1059–1075.
-
(2016)
Renew Sustain Energy Rev
, vol.53
, pp. 1059-1075
-
-
Giro-Paloma, J.1
Martínez, M.2
Cabeza, L.F.3
Fernández, A.I.4
-
112
-
-
0037208003
-
Microencapsulated PCM thermal-energy storage system
-
[112] Hawlader, M.N., Uddin, M.S., Khin, M.M., Microencapsulated PCM thermal-energy storage system. Appl Energy 74:1 (2003), 195–202.
-
(2003)
Appl Energy
, vol.74
, Issue.1
, pp. 195-202
-
-
Hawlader, M.N.1
Uddin, M.S.2
Khin, M.M.3
-
113
-
-
33751056734
-
A model for latent heat energy storage systems
-
[113] Yuksel, N., Avci, A., Kilic, M., A model for latent heat energy storage systems. Int J Energy Res 30:14 (2006), 1146–1157.
-
(2006)
Int J Energy Res
, vol.30
, Issue.14
, pp. 1146-1157
-
-
Yuksel, N.1
Avci, A.2
Kilic, M.3
-
114
-
-
68949183326
-
Performance enhancement in latent heat thermal storage system: a review
-
[114] Jegadheeswaran, S., Pohekar, S.D., Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev 13:9 (2009), 2225–2244.
-
(2009)
Renew Sustain Energy Rev
, vol.13
, Issue.9
, pp. 2225-2244
-
-
Jegadheeswaran, S.1
Pohekar, S.D.2
-
115
-
-
78149413789
-
Thermal conductivity enhancement of phase change materials for thermal energy storage: a review
-
[115] Fan, L., Khodadadi, J.M., Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15:1 (2011), 24–46.
-
(2011)
Renew Sustain Energy Rev
, vol.15
, Issue.1
, pp. 24-46
-
-
Fan, L.1
Khodadadi, J.M.2
-
116
-
-
84883535232
-
Modeling of thermal energy storage shell-and-tube heat exchanger
-
[116] Parry, A.J., Eames, P.C., Agyenim, F., Modeling of thermal energy storage shell-and-tube heat exchanger. Heat Transf Eng 35:1 (2014), 1–14.
-
(2014)
Heat Transf Eng
, vol.35
, Issue.1
, pp. 1-14
-
-
Parry, A.J.1
Eames, P.C.2
Agyenim, F.3
-
117
-
-
51249168903
-
Heat transfer characteristics in low-temperature latent heat storage systems using salt hydrates
-
[117] Choi, J.C., Kim, S.D., Han, G.Y., Heat transfer characteristics in low-temperature latent heat storage systems using salt hydrates. Korean J Chem Eng 12:2 (1995), 258–263.
-
(1995)
Korean J Chem Eng
, vol.12
, Issue.2
, pp. 258-263
-
-
Choi, J.C.1
Kim, S.D.2
Han, G.Y.3
-
118
-
-
77955191720
-
Development of PCM storage for process heat and power generation
-
[118] Steinmann, W.D., Laing, D., Tamme, R., Development of PCM storage for process heat and power generation. J Sol Energy Eng, 131(4), 2009, 041009.
-
(2009)
J Sol Energy Eng
, vol.131
, Issue.4
, pp. 041009
-
-
Steinmann, W.D.1
Laing, D.2
Tamme, R.3
-
119
-
-
77956612571
-
Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants
-
[119] Bayón, R., Rojas, E., Valenzuela, L., Zarza, E., León, J., Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants. Appl Therm Eng 30:17 (2010), 2643–2651.
-
(2010)
Appl Therm Eng
, vol.30
, Issue.17
, pp. 2643-2651
-
-
Bayón, R.1
Rojas, E.2
Valenzuela, L.3
Zarza, E.4
León, J.5
-
120
-
-
84859445182
-
Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes
-
[120] Tao, Y.B., He, Y.L., Qu, Z.G., Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes. Sol Energy 86:5 (2012), 1155–1163.
-
(2012)
Sol Energy
, vol.86
, Issue.5
, pp. 1155-1163
-
-
Tao, Y.B.1
He, Y.L.2
Qu, Z.G.3
-
121
-
-
42749096633
-
Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs
-
[121] Seeniraj, R.V., Narasimhan, N.L., Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 82:6 (2008), 535–542.
-
(2008)
Sol Energy
, vol.82
, Issue.6
, pp. 535-542
-
-
Seeniraj, R.V.1
Narasimhan, N.L.2
-
122
-
-
84910615412
-
Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material
-
[122] Tiari, S., Qiu, S., Mahdavi, M., Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material. Energy Convers Manag 89 (2015), 833–842.
-
(2015)
Energy Convers Manag
, vol.89
, pp. 833-842
-
-
Tiari, S.1
Qiu, S.2
Mahdavi, M.3
-
123
-
-
0033083386
-
Heat transfer enhancement in a latent heat storage system
-
[123] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., Schwarzer, K., Heat transfer enhancement in a latent heat storage system. Sol Energy 65:3 (1999), 171–180.
-
(1999)
Sol Energy
, vol.65
, Issue.3
, pp. 171-180
-
-
Velraj, R.1
Seeniraj, R.V.2
Hafner, B.3
Faber, C.4
Schwarzer, K.5
-
124
-
-
0442312322
-
Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems
-
[124] Ettouney, H.M., Alatiqi, I., Al-Sahali, M., Al-Ali, S.A., Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew Energy 29:6 (2004), 841–860.
-
(2004)
Renew Energy
, vol.29
, Issue.6
, pp. 841-860
-
-
Ettouney, H.M.1
Alatiqi, I.2
Al-Sahali, M.3
Al-Ali, S.A.4
-
125
-
-
84877800687
-
Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials
-
[125] Fan, L.W., Fang, X., Wang, X., Zeng, Y., Xiao, Y.Q., Yu, Z.T., Xu, X., Hu, Y.C., Cen, K.F., Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110 (2013), 163–172.
-
(2013)
Appl Energy
, vol.110
, pp. 163-172
-
-
Fan, L.W.1
Fang, X.2
Wang, X.3
Zeng, Y.4
Xiao, Y.Q.5
Yu, Z.T.6
Xu, X.7
Hu, Y.C.8
Cen, K.F.9
-
126
-
-
84922385215
-
Melting enhancement of a phase change material with presence of a metallic mesh
-
[126] Shuja, S.Z., Yilbas, B.S., Shaukat, M.M., Melting enhancement of a phase change material with presence of a metallic mesh. Appl Therm Eng 79 (2015), 163–173.
-
(2015)
Appl Therm Eng
, vol.79
, pp. 163-173
-
-
Shuja, S.Z.1
Yilbas, B.S.2
Shaukat, M.M.3
-
127
-
-
10444274888
-
Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix
-
[127] Mesalhy, O., Lafdi, K., Elgafy, A., Bowman, K., Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag 46:6 (2005), 847–867.
-
(2005)
Energy Convers Manag
, vol.46
, Issue.6
, pp. 847-867
-
-
Mesalhy, O.1
Lafdi, K.2
Elgafy, A.3
Bowman, K.4
-
128
-
-
79956149575
-
Experimental investigations of porous materials in high temperature thermal energy storage systems
-
[128] Wu, Z.G., Zhao, C.Y., Experimental investigations of porous materials in high temperature thermal energy storage systems. Sol Energy 85:7 (2011), 1371–1380.
-
(2011)
Sol Energy
, vol.85
, Issue.7
, pp. 1371-1380
-
-
Wu, Z.G.1
Zhao, C.Y.2
-
129
-
-
78650715521
-
Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite
-
[129] Zhao, C.Y., Wu, Z.G., Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite. Sol Energy Mater Sol Cells 95:2 (2011), 636–643.
-
(2011)
Sol Energy Mater Sol Cells
, vol.95
, Issue.2
, pp. 636-643
-
-
Zhao, C.Y.1
Wu, Z.G.2
-
130
-
-
84890016351
-
Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix
-
[130] Li, Z., Wu, Z.G., Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix. Sol Energy 99 (2014), 172–184.
-
(2014)
Sol Energy
, vol.99
, pp. 172-184
-
-
Li, Z.1
Wu, Z.G.2
-
131
-
-
84912123027
-
Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement
-
[131] Zhang, P., Xiao, X., Meng, Z.N., Li, M., Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Appl Energy 137 (2015), 758–772.
-
(2015)
Appl Energy
, vol.137
, pp. 758-772
-
-
Zhang, P.1
Xiao, X.2
Meng, Z.N.3
Li, M.4
-
132
-
-
84873697584
-
A nano-graphite/paraffin phase change material with high thermal conductivity
-
[132] Li, M., A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 106 (2013), 25–30.
-
(2013)
Appl Energy
, vol.106
, pp. 25-30
-
-
Li, M.1
-
133
-
-
73749085356
-
Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers
-
[133] Wang, J., Xie, H., Xin, Z., Li, Y., Chen, L., Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy 84:2 (2010), 339–344.
-
(2010)
Sol Energy
, vol.84
, Issue.2
, pp. 339-344
-
-
Wang, J.1
Xie, H.2
Xin, Z.3
Li, Y.4
Chen, L.5
-
134
-
-
84899111926
-
Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material
-
[134] Li, M., Chen, M., Wu, Z., Liu, J., Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manag 83 (2014), 325–329.
-
(2014)
Energy Convers Manag
, vol.83
, pp. 325-329
-
-
Li, M.1
Chen, M.2
Wu, Z.3
Liu, J.4
-
135
-
-
24944525809
-
Effect of carbon nanofiber additives on thermal behavior of phase change materials
-
[135] Elgafy, A., Lafdi, K., Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43:15 (2005), 3067–3074.
-
(2005)
Carbon
, vol.43
, Issue.15
, pp. 3067-3074
-
-
Elgafy, A.1
Lafdi, K.2
-
136
-
-
84875135176
-
An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure
-
[136] Ho, C.J., Gao, J.Y., An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Transf 62 (2013), 2–8.
-
(2013)
Int J Heat Mass Transf
, vol.62
, pp. 2-8
-
-
Ho, C.J.1
Gao, J.Y.2
-
137
-
-
84870671094
-
Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene
-
[137] Babaei, H., Keblinski, P., Khodadadi, J.M., Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:1 (2013), 209–216.
-
(2013)
Int J Heat Mass Transf
, vol.58
, Issue.1
, pp. 209-216
-
-
Babaei, H.1
Keblinski, P.2
Khodadadi, J.M.3
-
138
-
-
84871290108
-
Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes
-
[138] Yu, Z.T., Fang, X., Fan, L.W., Wang, X., Xiao, Y.Q., Zeng, Y., Xu, X., Hu, Y.C., Cen, K.F., Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 53 (2013), 277–285.
-
(2013)
Carbon
, vol.53
, pp. 277-285
-
-
Yu, Z.T.1
Fang, X.2
Fan, L.W.3
Wang, X.4
Xiao, Y.Q.5
Zeng, Y.6
Xu, X.7
Hu, Y.C.8
Cen, K.F.9
-
139
-
-
79951852302
-
The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials
-
[139] Cui, Y., Liu, C., Hu, S., Yu, X., The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95:4 (2011), 1208–1212.
-
(2011)
Sol Energy Mater Sol Cells
, vol.95
, Issue.4
, pp. 1208-1212
-
-
Cui, Y.1
Liu, C.2
Hu, S.3
Yu, X.4
-
140
-
-
84928484172
-
Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model
-
[140] Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., Zhang, Z., Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manag 102 (2015), 202–208.
-
(2015)
Energy Convers Manag
, vol.102
, pp. 202-208
-
-
Ling, Z.1
Chen, J.2
Xu, T.3
Fang, X.4
Gao, X.5
Zhang, Z.6
-
141
-
-
84910094051
-
Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles
-
[141] Motahar, S., Nikkam, N., Alemrajabi, A.A., Khodabandeh, R., Toprak, M.S., Muhammed, M., Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int Commun Heat Mass Transf 59 (2014), 68–74.
-
(2014)
Int Commun Heat Mass Transf
, vol.59
, pp. 68-74
-
-
Motahar, S.1
Nikkam, N.2
Alemrajabi, A.A.3
Khodabandeh, R.4
Toprak, M.S.5
Muhammed, M.6
-
142
-
-
84863248398
-
Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs
-
[142] Wu, S., Wang, H., Xiao, S., Zhu, D., Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs. Proc Eng 31 (2012), 240–244.
-
(2012)
Proc Eng
, vol.31
, pp. 240-244
-
-
Wu, S.1
Wang, H.2
Xiao, S.3
Zhu, D.4
-
143
-
-
84883769352
-
Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials
-
[143] Nabil, M., Khodadadi, J.M., Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Transf 67 (2013), 301–310.
-
(2013)
Int J Heat Mass Transf
, vol.67
, pp. 301-310
-
-
Nabil, M.1
Khodadadi, J.M.2
-
144
-
-
84898821980
-
Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application
-
[144] Li, T., Lee, J.H., Wang, R., Kang, Y.T., Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application. Int J Heat Mass Transf 75 (2014), 1–11.
-
(2014)
Int J Heat Mass Transf
, vol.75
, pp. 1-11
-
-
Li, T.1
Lee, J.H.2
Wang, R.3
Kang, Y.T.4
-
145
-
-
84896546764
-
On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit
-
[145] Jourabian, M., Farhadi, M., Sedighi, K., On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit. Comput Math Appl 67:7 (2014), 1358–1372.
-
(2014)
Comput Math Appl
, vol.67
, Issue.7
, pp. 1358-1372
-
-
Jourabian, M.1
Farhadi, M.2
Sedighi, K.3
-
146
-
-
84904184707
-
Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system
-
[146] Chandrasekaran, P., Cheralathan, M., Kumaresan, V., Velraj, R., Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy 72 (2014), 636–642.
-
(2014)
Energy
, vol.72
, pp. 636-642
-
-
Chandrasekaran, P.1
Cheralathan, M.2
Kumaresan, V.3
Velraj, R.4
-
147
-
-
84883525864
-
One-dimensional Stefan problem formulation for solidification of nanostructure-enhanced phase change materials (NePCM)
-
[147] El Hasadi, Y.M., Khodadadi, J.M., One-dimensional Stefan problem formulation for solidification of nanostructure-enhanced phase change materials (NePCM). Int J Heat Mass Transf 67 (2013), 202–213.
-
(2013)
Int J Heat Mass Transf
, vol.67
, pp. 202-213
-
-
El Hasadi, Y.M.1
Khodadadi, J.M.2
-
148
-
-
84881188668
-
An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity
-
[148] Zeng, Y., Fan, L.W., Xiao, Y.Q., Yu, Z.T., Cen, K.F., An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity. Int J Heat Mass Transf 66 (2013), 111–117.
-
(2013)
Int J Heat Mass Transf
, vol.66
, pp. 111-117
-
-
Zeng, Y.1
Fan, L.W.2
Xiao, Y.Q.3
Yu, Z.T.4
Cen, K.F.5
-
149
-
-
84907962439
-
Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface
-
[149] Abdollahzadeh, M., Esmaeilpour, M., Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int J Heat Mass Transf 80 (2015), 376–385.
-
(2015)
Int J Heat Mass Transf
, vol.80
, pp. 376-385
-
-
Abdollahzadeh, M.1
Esmaeilpour, M.2
-
150
-
-
84882403071
-
Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials
-
[150] Rao, Z., Wang, S., Peng, F., Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Transf 66 (2013), 575–584.
-
(2013)
Int J Heat Mass Transf
, vol.66
, pp. 575-584
-
-
Rao, Z.1
Wang, S.2
Peng, F.3
-
151
-
-
0003434994
-
Heat pipe science and technology
-
Global Digital Press
-
[151] Faghri, A., Heat pipe science and technology. 1995, Global Digital Press.
-
(1995)
-
-
Faghri, A.1
-
152
-
-
77953291825
-
High temperature latent heat thermal energy storage using heat pipes
-
[152] Shabgard, H., Bergman, T.L., Sharifi, N., Faghri, A., High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 53:15 (2010), 2979–2988.
-
(2010)
Int J Heat Mass Transf
, vol.53
, Issue.15
, pp. 2979-2988
-
-
Shabgard, H.1
Bergman, T.L.2
Sharifi, N.3
Faghri, A.4
-
153
-
-
79960644736
-
Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
-
[153] Nithyanandam, K., Pitchumani, R., Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int J Heat Mass Transf 54:21–22 (2011), 4596–4610.
-
(2011)
Int J Heat Mass Transf
, vol.54
, Issue.21-22
, pp. 4596-4610
-
-
Nithyanandam, K.1
Pitchumani, R.2
-
154
-
-
84859647644
-
Heat pipe-assisted melting of a phase change material
-
[154] Sharifi, N., Wang, S., Bergman, T.L., Faghri, A., Heat pipe-assisted melting of a phase change material. Int J Heat Mass Transf 55:13 (2012), 3458–3469.
-
(2012)
Int J Heat Mass Transf
, vol.55
, Issue.13
, pp. 3458-3469
-
-
Sharifi, N.1
Wang, S.2
Bergman, T.L.3
Faghri, A.4
-
155
-
-
84856657150
-
Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications
-
[155] Shabgard, H., Robak, C.W., Bergman, T.L., Faghri, A., Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Sol Energy 86:3 (2012), 816–830.
-
(2012)
Sol Energy
, vol.86
, Issue.3
, pp. 816-830
-
-
Shabgard, H.1
Robak, C.W.2
Bergman, T.L.3
Faghri, A.4
-
156
-
-
84871720923
-
Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power
-
[156] Nithyanandam, K., Pitchumani, R., Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energy 103 (2013), 400–415.
-
(2013)
Appl Energy
, vol.103
, pp. 400-415
-
-
Nithyanandam, K.1
Pitchumani, R.2
-
157
-
-
84897633210
-
Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power
-
[157] Jung, E.G., Boo, J.H., Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power. Sol Energy 102 (2014), 318–332.
-
(2014)
Sol Energy
, vol.102
, pp. 318-332
-
-
Jung, E.G.1
Boo, J.H.2
-
158
-
-
84907352768
-
Melting and solidification enhancement using a combined heat pipe, foil approach
-
[158] Sharifi, N., Allen, M.J., Faghri, A., Bergman, T.L., Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 78 (2014), 930–941.
-
(2014)
Int J Heat Mass Transf
, vol.78
, pp. 930-941
-
-
Sharifi, N.1
Allen, M.J.2
Faghri, A.3
Bergman, T.L.4
|