메뉴 건너뛰기




Volumn 80, Issue , 2012, Pages 38-46

Sparse nonnegative matrix factorization with ℓ 0-constraints

Author keywords

NMF; Nonnegative least squares; Sparse coding

Indexed keywords

BASIS MATRIX; COEFFICIENT MATRIX; LEAST SQUARE; MULTIPLICATIVE UPDATES; NMF; NONNEGATIVE LEAST SQUARES; NONNEGATIVE MATRIX FACTORIZATION; PART-BASED REPRESENTATION; SPARSE CODING; SPARSE NON-NEGATIVE MATRIX FACTORIZATIONS;

EID: 84855246748     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.09.024     Document Type: Article
Times cited : (157)

References (40)
  • 1
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee D.D., Seung H.S. Algorithms for non-negative matrix factorization. NIPS 2001, 556-562.
    • (2001) NIPS , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 2
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • Dhillon I.S., Sra S. Generalized nonnegative matrix approximations with Bregman divergences. NIPS 2005, 283-290.
    • (2005) NIPS , pp. 283-290
    • Dhillon, I.S.1    Sra, S.2
  • 3
    • 43249131130 scopus 로고    scopus 로고
    • Non-negative matrix factorization with α-divergence
    • Cichocki A., Lee H., Kim Y.D., Choi S. Non-negative matrix factorization with α-divergence. Pattern Recognition Lett. 2008, 29(9):1433-1440.
    • (2008) Pattern Recognition Lett. , vol.29 , Issue.9 , pp. 1433-1440
    • Cichocki, A.1    Lee, H.2    Kim, Y.D.3    Choi, S.4
  • 4
    • 0028561099 scopus 로고
    • Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P., Tapper U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 5
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by nonnegative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 7
    • 50249152311 scopus 로고    scopus 로고
    • Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
    • Virtanen T. Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans. Audio Speech Lang. Process. 2007, 15(3):1066-1074.
    • (2007) IEEE Trans. Audio Speech Lang. Process. , vol.15 , Issue.3 , pp. 1066-1074
    • Virtanen, T.1
  • 8
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis
    • Févotte C., Bertin N., Durrieu J.L. Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput. 2009, 21(3):793-830.
    • (2009) Neural Comput. , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.L.3
  • 9
    • 79959814523 scopus 로고    scopus 로고
    • A factorial sparse coder model for single channel source separation
    • Peharz R., Stark M., Pernkopf F. A factorial sparse coder model for single channel source separation. Proceedings of Interspeech 2010, 386-389.
    • (2010) Proceedings of Interspeech , pp. 386-389
    • Peharz, R.1    Stark, M.2    Pernkopf, F.3
  • 10
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • Xu W., Liu X., Gong Y. Document clustering based on non-negative matrix factorization. Proceedings of ACM SIGIR'03 2003, 267-273.
    • (2003) Proceedings of ACM SIGIR'03 , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 13
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5:1457-1469.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 15
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: convex programming methods for identifying sparse signals
    • Tropp J. Just relax: convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 2006, 51:1030-1051.
    • (2006) IEEE Trans. Inf. Theory , vol.51 , pp. 1030-1051
    • Tropp, J.1
  • 16
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • Vavasis S. On the complexity of nonnegative matrix factorization. SIAM J. Matrix Anal. Appl. J. Optim. 2009, 20(3):1364-1377.
    • (2009) SIAM J. Matrix Anal. Appl. J. Optim. , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.1
  • 17
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon M., Elad M., Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54:4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 19
    • 84855224879 scopus 로고    scopus 로고
    • Probabilistic Sparse Matrix Factorization, Technical Report PSI TR 2004-023, Department of Computer Science, University of Toronto
    • D. Dueck, B. Frey, Probabilistic Sparse Matrix Factorization, Technical Report PSI TR 2004-023, Department of Computer Science, University of Toronto, 2004.
    • (2004)
    • Dueck, D.1    Frey, B.2
  • 22
    • 71449121968 scopus 로고    scopus 로고
    • Spectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint
    • Yang Z., Chen X., Zhou G., Xie S. Spectral unmixing using nonnegative matrix factorization with smoothed L0 norm constraint. Proceedings of SPIE 2009.
    • (2009) Proceedings of SPIE
    • Yang, Z.1    Chen, X.2    Zhou, G.3    Xie, S.4
  • 25
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50(10):2231-2242.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.1
  • 26
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Bruckstein A.M., Elad M., Zibulevsky M. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf. Theory 2008, 54:4813-4820.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 28
  • 29
    • 24944500827 scopus 로고    scopus 로고
    • Fast algorithm for the solution of large-scale non-negativity-constrained least-squares problems
    • Van Benthem M., Keenan M. Fast algorithm for the solution of large-scale non-negativity-constrained least-squares problems. J. Chemometrics 2004, 18:441-450.
    • (2004) J. Chemometrics , vol.18 , pp. 441-450
    • Van Benthem, M.1    Keenan, M.2
  • 30
    • 67349093319 scopus 로고    scopus 로고
    • Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method
    • Kim H., Park H. Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 2008, 30:713-730.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 31
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Lin C.J. Projected gradient methods for nonnegative matrix factorization. Neural Comput. 2007, 19:2756-2779.
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.J.1
  • 36
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solutions of underdetermined linear equations by linear programming
    • Donoho D.L., Tanner J. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. 2005, 102(27):9446-9451.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , Issue.27 , pp. 9446-9451
    • Donoho, D.L.1    Tanner, J.2
  • 38
    • 29144523061 scopus 로고    scopus 로고
    • On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
    • Wächter A., Biegler L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Programming 2006, 106:25-57.
    • (2006) Math. Programming , vol.106 , pp. 25-57
    • Wächter, A.1    Biegler, L.T.2
  • 39
    • 33750368310 scopus 로고    scopus 로고
    • An audio-visual corpus for speech perception and automatic speech recognition
    • Cooke M.P., Barker J., Cunningham S.P., Shao X. An audio-visual corpus for speech perception and automatic speech recognition. J. Am. Stat. Assoc. 2006, 120:2421-2424.
    • (2006) J. Am. Stat. Assoc. , vol.120 , pp. 2421-2424
    • Cooke, M.P.1    Barker, J.2    Cunningham, S.P.3    Shao, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.