메뉴 건너뛰기




Volumn 58, Issue 1, 2015, Pages 73-87

The use of process mining in business process simulation model construction structuring the field

Author keywords

Business process simulation; Event log knowledge; Process mining; Simulation model construction

Indexed keywords


EID: 85007248658     PISSN: None     EISSN: 18670202     Source Type: Journal    
DOI: 10.1007/s12599-015-0410-4     Document Type: Article
Times cited : (79)

References (67)
  • 1
    • 84885971824 scopus 로고    scopus 로고
    • Combination of process mining and simulation techniques for business process redesign: A methodological approach
    • Aguirre S, Parra C, Alvardo J (2013) Combination of process mining and simulation techniques for business process redesign: a methodological approach. Lect Notes Bus Inf 162:24–43. doi:10. 1007/978-3-642-40919-6_2
    • (2013) Lect Notes Bus Inf , vol.162 , pp. 24-43
    • Aguirre, S.1    Parra, C.2    Alvardo, J.3
  • 2
    • 84904693761 scopus 로고    scopus 로고
    • Bridging abstraction layers in process mining
    • Baier T, Mendling J, Weske M (2014) Bridging abstraction layers in process mining. Inf Syst 46:123–139. doi:10.1007/978-3-642-40176-3_4
    • (2014) Inf Syst , vol.46 , pp. 123-139
    • Baier, T.1    Mendling, J.2    Weske, M.3
  • 3
    • 72849108756 scopus 로고    scopus 로고
    • Context aware trace clustering: Towards improving process mining results
    • Bose RPJC, van der Aalst WMP (2009) Context aware trace clustering: towards improving process mining results. In: Proceedings of the ninth SIAM international conference on data mining, pp 401–412. doi:10.1137/1.9781611972795.35
    • (2009) Proceedings of the Ninth SIAM International Conference on Data Mining , pp. 401-412
  • 4
    • 77953966768 scopus 로고    scopus 로고
    • Trace clustering based on conserved patterns: Towards achieving better process models
    • Bose RPJC, van der Aalst WMP (2010) Trace clustering based on conserved patterns: towards achieving better process models. Lect Notes Bus Inf 43:170–181. doi:10.1007/978-3-642-12186- 9_16
    • (2010) Lect Notes Bus Inf , vol.43 , pp. 170-181
  • 7
    • 84874390577 scopus 로고    scopus 로고
    • Discovering branching conditions from business process execution logs
    • de Leoni M, Dumas M, García-Bañuelos L (2013) Discovering branching conditions from business process execution logs. Lect Notes Comput Sci 7793:114–129. doi:10.1007/978-3-642- 37057-1_9
    • (2013) Lect Notes Comput Sci , vol.7793 , pp. 114-129
    • De Leoni, M.1    Dumas, M.2    García-Bañuelos, L.3
  • 9
    • 84861093725 scopus 로고    scopus 로고
    • A multidimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs
    • De Weerdt J, De Backer M, Vanthienen J, Baesens B (2012) A multidimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf Syst 37:654–676. doi:10.1016/j.is.2012.02.004
    • (2012) Inf Syst , vol.37 , pp. 654-676
    • De Weerdt, J.1    De Backer, M.2    Vanthienen, J.3    Baesens, B.4
  • 10
    • 84887932180 scopus 로고    scopus 로고
    • Active trace clustering for improved process discovery
    • De Weerdt J, Vanthienen J, Baesens B (2013) Active trace clustering for improved process discovery. IEEE T Knowl Data Eng 25:2708–2720. doi:10.1109/TKDE.2013.64
    • (2013) IEEE T Knowl Data Eng , vol.25 , pp. 2708-2720
    • De Weerdt, J.1    Vanthienen, J.2    Baesens, B.3
  • 11
    • 84856585052 scopus 로고    scopus 로고
    • Discovering user communities in large event logs
    • Ferreira DR, Alves C (2012) Discovering user communities in large event logs. Lect Notes Bus Inf 99:123–134. doi:10.1007/978-3- 642-28108-2_11
    • (2012) Lect Notes Bus Inf , vol.99 , pp. 123-134
    • Ferreira, D.R.1    Alves, C.2
  • 12
    • 84879662034 scopus 로고    scopus 로고
    • Mining the low-level behavior of agents in high-level business processes
    • Ferreira DR, Szimanski F, Ralha CG (2013) Mining the low-level behavior of agents in high-level business processes. Int J Bus Integr Manag 6:146–166. doi:10.1504/ijbpim.2013.054678
    • (2013) Int J Bus Integr Manag , vol.6 , pp. 146-166
    • Ferreira, D.R.1    Szimanski, F.2    Ralha, C.G.3
  • 13
    • 33746334454 scopus 로고    scopus 로고
    • Discovering expressive process models by clustering log traces
    • Greco G, Guzzo A, Ponieri L, Sacca D (2006) Discovering expressive process models by clustering log traces. IEEE T Knowl Data Eng 18:1010–1027. doi:10.1109/TKDE.2006.123
    • (2006) IEEE T Knowl Data Eng , vol.18 , pp. 1010-1027
    • Greco, G.1    Guzzo, A.2    Ponieri, L.3    Sacca, D.4
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182. doi:10.1162/ 153244303322753616
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 79953688532 scopus 로고    scopus 로고
    • Mining association rules to support resource allocation in business process management
    • Huang Z, Lu X, Duan H (2011) Mining association rules to support resource allocation in business process management. Expert Syst Appl 38:9483–9490. doi:10.1016/j.eswa.2011.01.146
    • (2011) Expert Syst Appl , vol.38 , pp. 9483-9490
    • Huang, Z.1    Lu, X.2    Duan, H.3
  • 21
    • 41649105271 scopus 로고    scopus 로고
    • A semi-automatic approach for workflow staff assignment
    • Liu Y, Wang J, Yang Y, Sun J (2008) A semi-automatic approach for workflow staff assignment. Comput Ind 59:463–476. doi:10. 1016/j.compind.2007.12.002
    • (2008) Comput Ind , vol.59 , pp. 463-476
    • Liu, Y.1    Wang, J.2    Yang, Y.3    Sun, J.4
  • 22
    • 84856002063 scopus 로고    scopus 로고
    • Workflow simulation for operational decision support using event graph through process mining
    • Liu Y, Zhang H, Li C, Jiao RJ (2012) Workflow simulation for operational decision support using event graph through process mining. Decis Support Syst 52:685–697. doi:10.1016/j.dss.2011.11.003
    • (2012) Decis Support Syst , vol.52 , pp. 685-697
    • Liu, Y.1    Zhang, H.2    Li, C.3    Jiao, R.J.4
  • 23
    • 33745134088 scopus 로고    scopus 로고
    • Mining staff assignment rules from event-based data
    • Ly TL, Rinderle S, Dadam P, Reichert M (2006) Mining staff assignment rules from event-based data. Lect Notes Comput Sci 3812:177–190. doi:10.1007/11678564_16
    • (2006) Lect Notes Comput Sci , vol.3812 , pp. 177-190
    • Ly, T.L.1    Rinderle, S.2    Dadam, P.3    Reichert, M.4
  • 27
    • 85083941090 scopus 로고    scopus 로고
    • Using process mining to model interarrival times: Investigating the sensitivity of the ARPRA framework
    • (forthcoming)
    • Martin N, Depaire B, Caris A (2015b) Using process mining to model interarrival times: investigating the sensitivity of the ARPRA framework. In: Proceedings of the 2015 winter simulation conference (forthcoming)
    • (2015) Proceedings of the 2015 Winter Simulation Conference
    • Martin, N.1    Depaire, B.2    Caris, A.3
  • 28
    • 71949100264 scopus 로고    scopus 로고
    • Redesigning business processes: A methodology based on simulation and process mining techniques
    • Mařuşter L, van Beest NRTP (2009) Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl Inf Syst 21:267–297. doi:10.1007/s10115-009-0224-0
    • (2009) Knowl Inf Syst , vol.21 , pp. 267-297
    • Mařuşter, L.1    Van Beest, N.2
  • 29
    • 0037287153 scopus 로고    scopus 로고
    • Use of business process simulation: A survey of practitioners
    • Melão N, Pidd M (2003) Use of business process simulation: a survey of practitioners. J Oper Res Soc 54:2–10. doi:10.1057/palgrave. jors.2601477
    • (2003) J Oper Res Soc , vol.54 , pp. 2-10
    • Melão, N.1    Pidd, M.2
  • 31
    • 77954005040 scopus 로고    scopus 로고
    • Analyzing resource behavior using process mining
    • Nakatumba J, van der Aalst WMP (2010) Analyzing resource behavior using process mining. Lect Notes Bus Inf 43:69–80. doi:10.1007/978-3-642-12186-9_8
    • (2010) Lect Notes Bus Inf , vol.43 , pp. 69-80
    • Nakatumba, J.1    Van Der Aalst, W.2
  • 32
    • 84864665360 scopus 로고    scopus 로고
    • Generating event logs with workload-dependent speeds from simulation models
    • Nakatumba J, Westergaard M, van der Aalst WMP (2012) Generating event logs with workload-dependent speeds from simulation models. Lect Notes Bus Inf 112:383–397. doi:10.1007/978-3- 642-31069-0_31
    • (2012) Lect Notes Bus Inf , vol.112 , pp. 383-397
    • Nakatumba, J.1    Westergaard, M.2    Van Der Aalst, W.3
  • 35
    • 85015986778 scopus 로고    scopus 로고
    • Process mining in a manufacturing company for predictions and planning
    • Pospíšil M, Mates V, Hruška T, Bartik V (2013) Process mining in a manufacturing company for predictions and planning. Int J Adv Softw 6:293–297
    • (2013) Int J Adv Softw , vol.6 , pp. 293-297
    • Pospíšil, M.1    Mates, V.2    Hruška, T.3    Bartik, V.4
  • 37
    • 84906748942 scopus 로고    scopus 로고
    • Temporal anomaly detection in business processes
    • Rogge-Solti A, Kasneci G (2014) Temporal anomaly detection in business processes. Lect Notes Comput Sci 8659:234–249. doi:10.1007/978-3-319-10172-9_15
    • (2014) Lect Notes Comput Sci , vol.8659 , pp. 234-249
    • Rogge-Solti, A.1    Kasneci, G.2
  • 38
    • 84904539418 scopus 로고    scopus 로고
    • Discovering stochastic Petri nets with arbitrary delay distributions from event logs
    • Rogge-Solti A, van der Aalst WMP, Weske M (2014) Discovering stochastic Petri nets with arbitrary delay distributions from event logs. Lect Notes Bus Inf 171:15–27. doi:10.1007/978-3-319- 06257-0_2
    • (2014) Lect Notes Bus Inf , vol.171 , pp. 15-27
    • Rogge-Solti, A.1    Van Der Aalst, W.M.P.2    Weske, M.3
  • 42
    • 57049107349 scopus 로고    scopus 로고
    • Workflow simulation for operational decision support using design, historic and state information
    • Rozinat A, Wynn MT, van der Aalst WMP, ter Hofstede A, Fidge CJ (2008b) Workflow simulation for operational decision support using design, historic and state information. Lect Notes Comput Sci 5240:196–211. doi:10.1007/978-3-540-85758-7_16
    • (2008) Lect Notes Comput Sci , vol.5240 , pp. 196-211
    • Rozinat, A.1    Wynn, M.T.2    Van Der Aalst, W.M.P.3    Ter Hofstede, A.4    Fidge, C.J.5
  • 45
    • 84903203255 scopus 로고    scopus 로고
    • Queue mining – predicting delays in service processes
    • In: Jarke M, Mylopoulos J, Quix C, Rolland C, Manolopoulos Y, Mouratidis H, Horkoff J, Springer, Berlin, Heidelberg
    • Senderovich A, Weidlich M, Gal A, Mandelbaum A (2014b) Queue mining – predicting delays in service processes. In: Jarke M, Mylopoulos J, Quix C, Rolland C, Manolopoulos Y, Mouratidis H, Horkoff J (eds) Advanced information systems engineering. Lecturer notes in computer science, vol 8484. Springer, Berlin, Heidelberg, pp 42–57. doi:10.1007/978-3-319-07881-6_4
    • (2014) Advanced Information Systems Engineering. Lecturer Notes in Computer Science , vol.8484 , pp. 42-57
    • Senderovich, A.1    Weidlich, M.2    Gal, A.3    Mandelbaum, A.4
  • 46
    • 84933674685 scopus 로고    scopus 로고
    • Queue mining for delay prediction in multi-class service processes
    • Senderovich A, Weidlich M, Gal A, Mandelbaum A (2015a) Queue mining for delay prediction in multi-class service processes. Inf Syst 53:278–295. doi:10.1016/j.is.2015.03.010
    • (2015) Inf Syst , vol.53 , pp. 278-295
    • Senderovich, A.1    Weidlich, M.2    Gal, A.3    Mandelbaum, A.4
  • 49
    • 56049101373 scopus 로고    scopus 로고
    • Towards comprehensive support for organizational mining
    • Song M, van der Aalst WMP (2008) Towards comprehensive support for organizational mining. Decis Support Syst 46:300–317. doi:10.1016/j.dss.2008.07.002
    • (2008) Decis Support Syst , vol.46 , pp. 300-317
    • Song, M.1    Van Der Aalst, W.M.P.2
  • 51
    • 84879854379 scopus 로고    scopus 로고
    • Improving business process models with agent-based simulation and process mining
    • Szimanski F, Ralha CG, Wagner G, Ferreira DR (2013) Improving business process models with agent-based simulation and process mining. Lect Notes Bus Inf 147:124–138. doi:10.1007/ 978-3-642-38484-4_10
    • (2013) Lect Notes Bus Inf , vol.147 , pp. 124-138
    • Szimanski, F.1    Ralha, C.G.2    Wagner, G.3    Ferreira, D.R.4
  • 54
    • 0002719897 scopus 로고    scopus 로고
    • The application of Petri nets to workflow management
    • van der Aalst WMP (1998) The application of Petri nets to workflow management. J Circuit Syst Comput 8:21–66. doi:10.1142/ S0218126698000043
    • (1998) J Circuit Syst Comput , vol.8 , pp. 21-66
    • Van Der Aalst, W.M.P.1
  • 56
    • 84879849848 scopus 로고    scopus 로고
    • Business process management: A comprehensive survey
    • van der Aalst WMP (2013a) Business process management: a comprehensive survey. ISRN Softw Eng 2013:37. doi:10.1155/ 2013/507984
    • (2013) ISRN Softw Eng , vol.2013 , pp. 37
    • Van Der Aalst, W.M.P.1
  • 58
    • 85029702838 scopus 로고    scopus 로고
    • Process cubes: Slicing, dicing, rolling up and drilling down event data for process mining
    • van der Aalst WMP (2013c) Process cubes: slicing, dicing, rolling up and drilling down event data for process mining. Lect Notes Bus Inf 159:1–22. doi:10.1007/978-3-319-02922-1_1
    • (2013) Lect Notes Bus Inf , vol.159 , pp. 1-22
    • Van Der Aalst, W.M.P.1
  • 59
    • 84979611416 scopus 로고    scopus 로고
    • Extracting event data from databases to unleash process mining
    • In: vom Brocke J, Schmiedel T (eds), Springer, Heidelberg
    • van der Aalst WMP (2015) Extracting event data from databases to unleash process mining. In: vom Brocke J, Schmiedel T (eds) BPM—driving innovation in a digital world. Springer, Heidelberg
    • (2015) BPM—driving Innovation in a Digital World
    • Van Der Aalst, W.M.P.1
  • 61
    • 78649485762 scopus 로고    scopus 로고
    • Time prediction based on process mining
    • van der Aalst WMP, Schonenberg MH, Song M (2011) Time prediction based on process mining. Inf Syst 36:450–475. doi:10. 1016/j.is.2010.09.001
    • (2011) Inf Syst , vol.36 , pp. 450-475
    • Van Der Aalst, W.M.P.1    Schonenberg, M.H.2    Song, M.3
  • 64
    • 77953963552 scopus 로고    scopus 로고
    • Understanding spaghetti models with sequence clustering in ProM
    • Veiga GM, Ferreira DR (2010) Understanding spaghetti models with sequence clustering in ProM. Lect Notes Bus Inf 43:92–103. doi:10.1007/978-3-642-12186-9_10
    • (2010) Lect Notes Bus Inf , vol.43 , pp. 92-103
    • Veiga, G.M.1    Ferreira, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.