메뉴 건너뛰기




Volumn 26, Issue 2, 2016, Pages 116-123

Fuzzy C means integrated with spatial information and contrast enhancement for segmentation of MR brain images

Author keywords

fuzzy C means; MR brain image segmentation; spatial information

Indexed keywords

BRAIN MAPPING; CEREBROSPINAL FLUID; CLUSTERING ALGORITHMS; FUZZY CLUSTERING; FUZZY SYSTEMS; MEMBERSHIP FUNCTIONS; PIXELS;

EID: 84975297743     PISSN: 08999457     EISSN: 10981098     Source Type: Journal    
DOI: 10.1002/ima.22166     Document Type: Article
Times cited : (24)

References (29)
  • 1
    • 79151470301 scopus 로고    scopus 로고
    • Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
    • A. Demirhan and I. Guler, Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation, Eng Appl Artif Intell 24 (2011), 358–367.
    • (2011) Eng Appl Artif Intell , vol.24 , pp. 358-367
    • Demirhan, A.1    Guler, I.2
  • 4
    • 84922745189 scopus 로고    scopus 로고
    • A multiobjective spatial fuzzy clustering algorithm for image segmentation
    • F. Zhao, H. Liu, and J. Fan, A multiobjective spatial fuzzy clustering algorithm for image segmentation, Appl Soft Comput 30 (2015), 48–57.
    • (2015) Appl Soft Comput , vol.30 , pp. 48-57
    • Zhao, F.1    Liu, H.2    Fan, J.3
  • 5
    • 84939531063 scopus 로고    scopus 로고
    • Improved fuzzy entropy clustering algorithm for MRI brain image segmentation
    • H. Verma, R.K. Agrawal, and N. Kumar, Improved fuzzy entropy clustering algorithm for MRI brain image segmentation, Int J Imaging Syst Technol 24 (2014), 277–283.
    • (2014) Int J Imaging Syst Technol , vol.24 , pp. 277-283
    • Verma, H.1    Agrawal, R.K.2    Kumar, N.3
  • 6
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • J. Ashburner and K.J. Friston, Unified segmentation, NeuroImage 26 (2005), 839–851.
    • (2005) NeuroImage , vol.26 , pp. 839-851
    • Ashburner, J.1    Friston, K.J.2
  • 8
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
    • J. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters, J Cybernet 3 (1974), 32–57.
    • (1974) J Cybernet , vol.3 , pp. 32-57
    • Dunn, J.1
  • 9
    • 84906097723 scopus 로고    scopus 로고
    • Segmentation for brain magnetic resonance images using dual-tree complex wavelet transform and spatial constrained self-organizing tree map
    • J. Zhang and W. Jiang, Segmentation for brain magnetic resonance images using dual-tree complex wavelet transform and spatial constrained self-organizing tree map, Int J Imaging Syst Technol 24 (2014), 208–214.
    • (2014) Int J Imaging Syst Technol , vol.24 , pp. 208-214
    • Zhang, J.1    Jiang, W.2
  • 10
    • 84935913915 scopus 로고    scopus 로고
    • Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation
    • K. Kazemi and N. Noorizadeh, Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation, J Biomed Phys Eng 4 (2014), 13–26.
    • (2014) J Biomed Phys Eng , vol.4 , pp. 13-26
    • Kazemi, K.1    Noorizadeh, N.2
  • 13
    • 84894475061 scopus 로고    scopus 로고
    • Fuzzy C-mean based brain MRI segmentation algorithms
    • M.A. Balafar, Fuzzy C-mean based brain MRI segmentation algorithms, Artif Intell Rev 41 (2014), 441–449.
    • (2014) Artif Intell Rev , vol.41 , pp. 441-449
    • Balafar, M.A.1
  • 14
    • 0036489378 scopus 로고    scopus 로고
    • A modified Fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty, A modified Fuzzy C-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans Med Imaging 21 (2002), 193–199.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 15
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy, c-means based algorithm for bias estimation and segmentation of brain MRI
    • M.Y. Siyal and L. Yu, An intelligent modified fuzzy, c-means based algorithm for bias estimation and segmentation of brain MRI, Pattern Recogn Lett 26 (2005), 2052–2062.
    • (2005) Pattern Recogn Lett , vol.26 , pp. 2052-2062
    • Siyal, M.Y.1    Yu, L.2
  • 16
    • 84929837828 scopus 로고    scopus 로고
    • Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps
    • Q. Mahmood, A. Chodorowski, and M. Persson, Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps, IRBM 36 (2015), 185–196.
    • (2015) IRBM , vol.36 , pp. 185-196
    • Mahmood, Q.1    Chodorowski, A.2    Persson, M.3
  • 17
    • 84907314415 scopus 로고    scopus 로고
    • A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches
    • S. Agrawal, R. Panda, and L. Dora, A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches, Appl Soft Comput 24 (2014), 522–533.
    • (2014) Appl Soft Comput , vol.24 , pp. 522-533
    • Agrawal, S.1    Panda, R.2    Dora, L.3
  • 18
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure
    • S. Chen and D. Zhang, Robust image segmentation using FCM with spatial constraints based on new Kernel-induced distance measure, IEEE Trans Syst, Man, and Cybernetics-Part B: Cybernetics 34 (2004), 1907–1916.
    • (2004) IEEE Trans Syst, Man, and Cybernetics-Part B: Cybernetics , vol.34 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 19
    • 84928826260 scopus 로고    scopus 로고
    • Evaluation of k-Means and fuzzy C-Means segmentation of MR images of brain
    • S. Madhukumar and N. Santhiyakumari, Evaluation of k-Means and fuzzy C-Means segmentation of MR images of brain, Egypt J Radiol Nucl Med 46 (2015), 475–479.
    • (2015) Egypt J Radiol Nucl Med , vol.46 , pp. 475-479
    • Madhukumar, S.1    Santhiyakumari, N.2
  • 20
    • 78049245404 scopus 로고    scopus 로고
    • Modified fuzzy, c-means algorithm for segmentation of T1-T2-weighted brain MRI
    • S. Ramathilagam, R. Pandiyarajan, A. Sathya, R. Devi, and S.R. Kannan, Modified fuzzy, c-means algorithm for segmentation of T1-T2-weighted brain MRI, J Comput Appl Math 235 (2011), 1578–1586.
    • (2011) J Comput Appl Math , vol.235 , pp. 1578-1586
    • Ramathilagam, S.1    Pandiyarajan, R.2    Sathya, A.3    Devi, R.4    Kannan, S.R.5
  • 21
    • 84934916571 scopus 로고    scopus 로고
    • Conditional spatial fuzzy, c-means clustering algorithm for segmentation of MRI images
    • S.K. Adhikari, J.K. Sing, D.K. Basu, and M. Nasipuri, Conditional spatial fuzzy, c-means clustering algorithm for segmentation of MRI images, Appl Soft Comput 34 (2015), 758–769.
    • (2015) Appl Soft Comput , vol.34 , pp. 758-769
    • Adhikari, S.K.1    Sing, J.K.2    Basu, D.K.3    Nasipuri, M.4
  • 22
    • 84919394839 scopus 로고    scopus 로고
    • Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations
    • V. Sergi, O. Arnau, C. Mariano, R. Eloy, and, L. Xavier, Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations, J Magn Reson Imaging 41 (2014), 93–101.
    • (2014) J Magn Reson Imaging , vol.41 , pp. 93-101
    • Sergi, V.1    Arnau, O.2    Mariano, C.3    Eloy, R.4    Xavier, L.5
  • 23
    • 84899489089 scopus 로고    scopus 로고
    • The Study and application of the improved region growing algorithm for liver segmentation
    • X. Lu, J. Wu, X. Ren, B. Zhang, and Y. Li, The Study and application of the improved region growing algorithm for liver segmentation, Optik 125 (2014), 2142–2147.
    • (2014) Optik , vol.125 , pp. 2142-2147
    • Lu, X.1    Wu, J.2    Ren, X.3    Zhang, B.4    Li, Y.5
  • 24
    • 84879709644 scopus 로고    scopus 로고
    • Brain magnetic resonance image segmentation based on an adapted non-local fuzzy, c-means method
    • Y. Chen, J. Zhang, S. Wang, and Y. Zheng, Brain magnetic resonance image segmentation based on an adapted non-local fuzzy, c-means method, IET Computer Vision 6 (2012), 610–625.
    • (2012) IET Computer Vision , vol.6 , pp. 610-625
    • Chen, Y.1    Zhang, J.2    Wang, S.3    Zheng, Y.4
  • 25
    • 77956292530 scopus 로고    scopus 로고
    • Fuzzy c-means clustering based on spatial neighborhood information for image segmentation
    • Y. Li and Y. Shen, Fuzzy c-means clustering based on spatial neighborhood information for image segmentation, J Syst Eng Electron 21 (2010), 323–328.
    • (2010) J Syst Eng Electron , vol.21 , pp. 323-328
    • Li, Y.1    Shen, Y.2
  • 26
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Trans Med Imaging 20 (2001), 45–57.
    • (2001) IEEE Trans Med Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 27
    • 84892877985 scopus 로고    scopus 로고
    • A multiobjective fuzy clustering algorithm based on robust local spatial information for image segmentation
    • Z. Feng, H. Liu, and J. Fan, A multiobjective fuzy clustering algorithm based on robust local spatial information for image segmentation, Lecture Note Comput Sci 8261 (2013), 505–512.
    • (2013) Lecture Note Comput Sci , vol.8261 , pp. 505-512
    • Feng, Z.1    Liu, H.2    Fan, J.3
  • 28
    • 84896817040 scopus 로고    scopus 로고
    • Neighborhood weighted fuzzy c-means clustering algorithm for image segmentation
    • Z. Zaixin, C. Lizhi, and C. Guangquan, Neighborhood weighted fuzzy c-means clustering algorithm for image segmentation, IET Image Process 8 (2014), 150–161.
    • (2014) IET Image Process , vol.8 , pp. 150-161
    • Zaixin, Z.1    Lizhi, C.2    Guangquan, C.3
  • 29
    • 79956352343 scopus 로고    scopus 로고
    • A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image
    • Z.-X. Ji, Q.-S. Sun, and D.-S. Xia, A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image, Comput Med Imaging Graphics 35 (2011), 383–397.
    • (2011) Comput Med Imaging Graphics , vol.35 , pp. 383-397
    • Ji, Z.-X.1    Sun, Q.-S.2    Xia, D.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.