메뉴 건너뛰기




Volumn 47, Issue 7, 2014, Pages 2454-2466

Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation

Author keywords

Fuzzy c means; Image segmentation; Intensity inhomogeneity; Magnetic resonance imaging; Spatial information

Indexed keywords

BRAIN MAPPING; CLUSTERING ALGORITHMS; COPYING; FUZZY CLUSTERING; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; PIXELS; PROBABILITY; STATISTICS; TISSUE;

EID: 84897115227     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.01.017     Document Type: Article
Times cited : (123)

References (35)
  • 1
    • 33847774807 scopus 로고    scopus 로고
    • A review of methods for correction of intensity inhomogeneity in MRI
    • U. Vovk, F. Pernus, and B. Likar A review of methods for correction of intensity inhomogeneity in MRI IEEE Trans. Med. Imaging 26 2007 405 421
    • (2007) IEEE Trans. Med. Imaging , vol.26 , pp. 405-421
    • Vovk, U.1    Pernus, F.2    Likar, B.3
  • 2
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • D. Pham, and J. Prince Adaptive fuzzy segmentation of magnetic resonance images IEEE Trans. Med. Imaging 18 1999 737 752
    • (1999) IEEE Trans. Med. Imaging , vol.18 , pp. 737-752
    • Pham, D.1    Prince, J.2
  • 3
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • M. Ahmed, S. Yamany, N. Mohamed, A. Farag, and T. Moriarty A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data IEEE Trans. Med. Imaging 21 2002 193 199
    • (2002) IEEE Trans. Med. Imaging , vol.21 , pp. 193-199
    • Ahmed, M.1    Yamany, S.2    Mohamed, N.3    Farag, A.4    Moriarty, T.5
  • 4
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
    • A. Liew, and H. Yan An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation IEEE Trans. Med. Imaging 22 2003 1063 1075
    • (2003) IEEE Trans. Med. Imaging , vol.22 , pp. 1063-1075
    • Liew, A.1    Yan, H.2
  • 5
    • 70349320323 scopus 로고    scopus 로고
    • Classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework
    • C. Li, C. Xu, A. Anderson, J. Gore, M.R.I. Tissue, Classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework, in: Proceedings of the 21st International Conference on IPMI, LNCS, vol. 5636, 2009, pp. 288-299.
    • (2009) Proceedings of the 21st International Conference on IPMI, LNCS , vol.5636 , pp. 288-299
    • Li, C.1    Xu, C.2    Anderson, A.3    Gore, J.4    Tissue, M.R.I.5
  • 6
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information c-means clustering algorithm
    • S. Krinidis, and V. Chatzis A robust fuzzy local information c-means clustering algorithm IEEE Trans. Image Process. 19 2010 1328 1337
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 8
    • 79956352343 scopus 로고    scopus 로고
    • A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image
    • Z.X. Ji, Q.S. Sun, and D.S. Xia A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image Computerized Med. Imaging Graphics 35 2011 383 397
    • (2011) Computerized Med. Imaging Graphics , vol.35 , pp. 383-397
    • Ji, Z.X.1    Sun, Q.S.2    Xia, D.S.3
  • 9
    • 68349147767 scopus 로고    scopus 로고
    • A fully automated algorithm under modified FCM framework for improved brain MR image segmentation
    • K. Sikka, N. Sinha, P.K. Singh, and A.K. Mishra A fully automated algorithm under modified FCM framework for improved brain MR image segmentation Magn. Reson. Imaging 27 2009 994 1004
    • (2009) Magn. Reson. Imaging , vol.27 , pp. 994-1004
    • Sikka, K.1    Sinha, N.2    Singh, P.K.3    Mishra, A.K.4
  • 10
    • 0032017754 scopus 로고    scopus 로고
    • A Gaussian mixture based image segmentation algorithm
    • L. Gupta, and T. Sortrakul A Gaussian mixture based image segmentation algorithm Pattern Recognit. 31 1998 315 325
    • (1998) Pattern Recognit. , vol.31 , pp. 315-325
    • Gupta, L.1    Sortrakul, T.2
  • 13
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm
    • G.S. Sanjay, and T.J. Hebert Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm IEEE Trans. Image Process. 7 1998 1014 1028
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 1014-1028
    • Sanjay, G.S.1    Hebert, T.J.2
  • 15
    • 33748123943 scopus 로고    scopus 로고
    • Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
    • H. Greenspan, A. Ruf, and J. Goldberger Constrained Gaussian mixture model framework for automatic segmentation of MR brain images IEEE Trans. Med. Imaging 25 2006 1233 1245
    • (2006) IEEE Trans. Med. Imaging , vol.25 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 16
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an em algorithm for image segmentation
    • A. Diplaros, N. Vlassis, and T. Gevers A spatially constrained generative model and an EM algorithm for image segmentation IEEE Trans. Neural Netw. 18 2007 798 808
    • (2007) IEEE Trans. Neural Netw. , vol.18 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 17
    • 34047208285 scopus 로고    scopus 로고
    • A class-adaptive spatially variant mixture model for image segmentation
    • C. Nikou, N. Galatsanos, and A. Likas A class-adaptive spatially variant mixture model for image segmentation IEEE Trans. Image Process. 16 2007 1121 1130
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 1121-1130
    • Nikou, C.1    Galatsanos, N.2    Likas, A.3
  • 18
    • 84875979451 scopus 로고    scopus 로고
    • Fast and robust spatially constrained gaussian mixture model for image segmentation
    • T. Nguyen, and Q. Wu Fast and robust spatially constrained gaussian mixture model for image segmentation IEEE Trans. Circuits Syst. Video Technol. 23 2013 621 635
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , pp. 621-635
    • Nguyen, T.1    Wu, Q.2
  • 20
    • 49449100216 scopus 로고    scopus 로고
    • Type-2 fuzzy gaussian mixture
    • J. Zeng, L. Xie, and Z. Liu Type-2 fuzzy gaussian mixture Pattern Recognit. 41 2008 3636 3643
    • (2008) Pattern Recognit. , vol.41 , pp. 3636-3643
    • Zeng, J.1    Xie, L.2    Liu, Z.3
  • 21
    • 54349092861 scopus 로고    scopus 로고
    • Clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation
    • S. Chatzis, T.A. Varvarigou, and A. Fuzzy Clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation IEEE Trans. Fuzzy Syst. 16 2008 1351 1361
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1351-1361
    • Chatzis, S.1    Varvarigou, T.A.2    Fuzzy, A.3
  • 22
    • 84871375193 scopus 로고    scopus 로고
    • A robust fuzzy algorithm based on Students t-distribution and mean template for image segmentation application
    • H. Zhang, Q.M. Jonathan, and Wu, T.M. Nguyen A robust fuzzy algorithm based on Students t-distribution and mean template for image segmentation application IEEE Signal Process. Lett. 20 2013 117 120
    • (2013) IEEE Signal Process. Lett. , vol.20 , pp. 117-120
    • Zhang, H.1    Jonathan, Q.M.2    Nguyen, W.T.M.3
  • 28
    • 34548660459 scopus 로고    scopus 로고
    • Upper and lower values for the level of fuzziness in FCM
    • I. Ozkan, and I.B. Turksen. Upper and lower values for the level of fuzziness in FCM Inf. Sci. 177 2007 5143 5152
    • (2007) Inf. Sci. , vol.177 , pp. 5143-5152
    • Ozkan, I.1    Turksen, I.B.2
  • 31
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • G. Celeux, F. Forbes, and N. Peyrard. EM procedures using mean field-like approximations for Markov model-based image segmentation Pattern Recognit. 36 2003 131 144
    • (2003) Pattern Recognit. , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 32
    • 0041908169 scopus 로고    scopus 로고
    • Finding overlapping components with MML
    • R.A. Baxter, and J.J. Olivier Finding overlapping components with MML Stat. Comput. 10 2000 5 16
    • (2000) Stat. Comput. , vol.10 , pp. 5-16
    • Baxter, R.A.1    Olivier, J.J.2
  • 33
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification IEEE Trans. Autom. Control 19 1974 716 723
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 34
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen Modeling by shortest data description Automatica 14 1978 465 471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.