-
2
-
-
40349089023
-
Probabilistic inductive logic programming
-
De Raedt, L., Frasconi, P., Kersting, K.,Muggleton, S.H. (eds.), LNCS (LNAI), Springer, Heidelberg
-
De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K.,Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1-27. Springer, Heidelberg (2008)
-
(2008)
Probabilistic Inductive Logic Programming
, vol.4911
, pp. 1-27
-
-
De Raedt, L.1
Kersting, K.2
-
3
-
-
1942421161
-
Relational instance based regression for relational reinforcement learning
-
Driessens, K., Ramon, J.: Relational instance based regression for relational reinforcement learning. In: Proc. ICML (2003)
-
(2003)
Proc. ICML
-
-
Driessens, K.1
Ramon, J.2
-
4
-
-
29344460055
-
Dynamic programming for structured continuous Markov decision problems
-
Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic programming for structured continuous Markov decision problems. In: Proc. UAI (2004)
-
(2004)
Proc. UAI
-
-
Feng, Z.1
Dearden, R.2
Meuleau, N.3
Washington, R.4
-
6
-
-
70049098573
-
Church: A language for generative models
-
Goodman, N., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: A language for generative models. In: Proc. UAI, pp. 220-229 (2008)
-
(2008)
Proc. UAI
, pp. 220-229
-
-
Goodman, N.1
Mansinghka, V.K.2
Roy, D.M.3
Bonawitz, K.4
Tenenbaum, J.B.5
-
7
-
-
80054898934
-
-
Theory and Practice of Logic Programming
-
Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming (2011)
-
(2011)
The magic of logical inference in probabilistic programming
-
-
Gutmann, B.1
Thon, I.2
Kimmig, A.3
Bruynooghe, M.4
De Raedt, L.5
-
9
-
-
84866455160
-
PROST: Probabilistic planning based on UCT
-
Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: Proc. ICAPS (2012)
-
(2012)
Proc. ICAPS
-
-
Keller, T.1
Eyerich, P.2
-
10
-
-
58549084036
-
On the efficient execution of problog programs
-
Garcia de la Banda, M., Pontelli, E. (eds.), LNCS, Springer, Heidelberg
-
Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient execution of problog programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 175-189. Springer, Heidelberg (2008)
-
(2008)
ICLP 2008
, vol.5366
, pp. 175-189
-
-
Kimmig, A.1
Santos Costa, V.2
Rocha, R.3
Demoen, B.4
De Raedt, L.5
-
11
-
-
33750293964
-
Bandit based monte-carlo planning
-
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.), LNCS (LNAI), Springer, Heidelberg
-
Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282-293. Springer, Heidelberg (2006)
-
(2006)
ECML 2006
, vol.4212
, pp. 282-293
-
-
Kocsis, L.1
Szepesvári, C.2
-
13
-
-
80054835987
-
Sample-Based planning for continuous action markov decision processes
-
Mansley, C.R., Weinstein, A., Littman, M.L.: Sample-Based planning for continuous action markov decision processes. In: Proc. ICAPS (2011)
-
(2011)
Proc. ICAPS
-
-
Mansley, C.R.1
Weinstein, A.2
Littman, M.L.3
-
14
-
-
65349138293
-
A heuristic search approach to planning with continuous resources in stochastic domains
-
Meuleau, N., Benazera, E., Brafman, R.I., Hansen, E.A., Mausam, M.: A heuristic search approach to planning with continuous resources in stochastic domains. Journal of Artificial Intelligence Research 34(1), 27 (2009)
-
(2009)
Journal of Artificial Intelligence Research
, vol.34
, Issue.1
, pp. 27
-
-
Meuleau, N.1
Benazera, E.2
Brafman, R.I.3
Hansen, E.A.4
Mausam, M.5
-
15
-
-
84880739933
-
BLOG: Probabilistic models with unknown objects
-
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: probabilistic models with unknown objects. In: Proc. IJCAI (2005)
-
(2005)
Proc. IJCAI
-
-
Milch, B.1
Marthi, B.2
Russell, S.3
Sontag, D.4
Ong, D.5
Kolobov, A.6
-
20
-
-
18544382314
-
Learning from scarce experience
-
Peshkin, L., Shelton, C.R.: Learning from scarce experience. In: Proc. ICML, pp. 498-505 (2002)
-
(2002)
Proc. ICML
, pp. 498-505
-
-
Peshkin, L.1
Shelton, C.R.2
-
21
-
-
0242393653
-
Eligibility traces for off-policy policy evaluation
-
Precup, D., Sutton, R.S., Singh, S.P.: Eligibility traces for off-policy policy evaluation. In: Proc. ICML (2000)
-
(2000)
Proc. ICML
-
-
Precup, D.1
Sutton, R.S.2
Singh, S.P.3
-
23
-
-
80053161811
-
Symbolic dynamic programming for discrete and continuous state MDPs
-
Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for discrete and continuous state MDPs. In: Proc. UAI (2011)
-
(2011)
Proc. UAI
-
-
Sanner, S.1
Delgado, K.V.2
de Barros, L.N.3
-
24
-
-
18544374225
-
Policy improvement for POMDPs using normalized importance sampling
-
Shelton, C.R.: Policy improvement for POMDPs using normalized importance sampling. In: Proc. UAI, pp. 496-503 (2001)
-
(2001)
Proc. UAI
, pp. 496-503
-
-
Shelton, C.R.1
-
26
-
-
0001898381
-
Practical reinforcement learning in continuous spaces
-
Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous spaces. In: Proc. ICML (2000)
-
(2000)
Proc. ICML
-
-
Smart, W.D.1
Kaelbling, L.P.2
-
27
-
-
84923305328
-
First-order open-universe POMDPs
-
Srivastava, S., Russell, S., Ruan, P., Cheng, X.: First-order open-universe POMDPs. In: Proc. UAI (2014)
-
(2014)
Proc. UAI
-
-
Srivastava, S.1
Russell, S.2
Ruan, P.3
Cheng, X.4
-
29
-
-
85130714337
-
DTProbLog: A decision-theoretic probabilistic prolog
-
Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: a decision-theoretic probabilistic prolog. In: Proc. AAAI (2010)
-
(2010)
Proc. AAAI
-
-
Van den Broeck, G.1
Thon, I.2
van Otterlo, M.3
De Raedt, L.4
-
30
-
-
84919905597
-
Model-Based relational RL when object existence is partially observable
-
Vien, N.A., Toussaint, M.: Model-Based relational RL when object existence is partially observable. In: Proc. ICML (2014)
-
(2014)
Proc. ICML
-
-
Vien, N.A.1
Toussaint, M.2
-
31
-
-
85167397400
-
Integrating sample-based planning and model-based reinforcement learning
-
Walsh, T.J., Goschin, S., Littman, M.L.: Integrating sample-based planning and model-based reinforcement learning. In: Proc. AAAI (2010)
-
(2010)
Proc. AAAI
-
-
Walsh, T.J.1
Goschin, S.2
Littman, M.L.3
|